Mea AI adiutor dicit:
When NASA’s Space Launch System (SLS) powers into the sky, it must contend with some of the most extreme and complex aerodynamic conditions ever attempted. The ascent phase—especially during transonic and supersonic transitions and through maximum aerodynamic stress—is a crucible for design and engineering. Rather than rely solely on wind tunnels, NASA has increasingly turned to supercomputer-based computational fluid dynamics (CFD) simulations to model the flows around the twin solid rocket boosters, the core stage, and plume interactions. These simulations feed into aerodynamic databases used across vehicle design, structural loads, control algorithms, and safety margins.
The challenge in modeling the flow around SLS boosters is immense. As the vehicle accelerates, shock waves form, flow separation regions emerge, boundary layers evolve, and the rocket plumes themselves strongly interact with the surrounding airstream. Moreover, during events like booster separation, multiple plumes fire simultaneously—up to 22 different exhaust sources in some analyses, combining output from the core engines, boosters, and separation motors. Resolving those off-body interactions, transient flow features, and the coupling between vehicle aerodynamics and plume dynamics demands very high fidelity simulations. The NASA team has used solvers such as OVERFLOW, FUN3D, and Cart3D to explore a wide envelope of flight conditions.
Running these simulations requires massive computational resources. Each case can consume thousands to tens of thousands of core-hours, depending on flow complexity, grid resolution, and the number of interacting plumes. To build a full aerodynamic database that spans multiple Mach numbers, angles of attack, mass fractions, and thrust conditions, NASA runs hundreds to thousands of individual cases. The supercomputers at the NASA Advanced Supercomputing (NAS) facility, including Pleiades, Electra, and others, serve as the backbone of these efforts. Through careful meshing strategies, solver optimizations, and parallel computing techniques, engineers map out pressure distributions, shear stresses, and load profiles for every relevant component of the booster-core assembly.
These simulation results are not academic exercises—they directly inform the safety and performance of SLS missions. The aerodynamics databases are used by structural engineers to assess bending loads, by guidance and control teams to refine trajectory models, and by separation system designers to ensure that boosters detach cleanly without risking collision with the core. When flight data come in, the models themselves can be validated and refined, closing the loop between simulation and real world performance. As SLS evolves—especially with future variants and heavier payloads—the simulation infrastructure will scale accordingly, enabling continuous improvements in confidence, margin, and mission success.
Video credit: NASA/NAS/Gerrit-Daniel Stich, Michael Barad, Timothy Sandstrom, Derek Dalle






Subscribe to blog posts using RSS









