OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Q&A category

 

 

Sierra Space dicit:

We have successfully completed our sixth stress test and fourth Ultimate Burst Pressure (UBP) test for our LIFE® 10 commercial space station technology, achieving a rupture at 255 psi, the highest pressure yet. This test exceeded NASA’s Factor of Safety recommendations, demonstrating a safety factor greater than 16x in Low Earth Orbit (LEO) and 23x in lunar environments. Our team continues to lead in the development of expandable structures for various space applications, as we build the world’s first commercial space station.

Video credit: Sierra Space

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Today we are joined by Yasunori Yamazaki, Chief Business Officer at Axelspace. Axelspace are pioneers of microsatellite technology advancing the frontiers of space business, reimagining traditional ways of using space, and creating a society where everyone on our planet can make space part of their life.

Orbital Hub: Axelspace’s goal is to advance the frontiers of space business. How is Axelspace making space more accessible?

Yasunori Yamazaki: Our vision is to bring the space technology down to earth for universal access, empowering everyone with actionable earth observation data to make smart decisions.

O.H.: Could you share any details about innovative technologies used by Axelspace when designing and building satellites?

Yasu: We have been developing satellites for more than 11 years now, experimenting with various methods and implementing new technology to constantly improve and innovate. This trial and error itself is a new concept in our industry as the cost of making a mistake is prohibitive from an investment perspective.

O.H.: What is the approach used by Axelspace for microsatellite design? Do you use custom designs specific to each mission or a modular design that allows reuse and minimal mission specific customization?

Yasu: The designing process depends on the mission. For unique purposes, we will start with a whiteboard, deep diving into the problem and figuring out the most efficient and effective way of delivering the solution. We are also in the process of constructing an orbital infrastructure, based on proprietary modulated satellite, GRUS, to bring down the cost of manufacturing, thus passing on the savings to the users of the data.

O.H.: What payload types can be integrated with Axelspace microsatellites?

Yasu: Most anything can be carried by our microsatellites, as we can build from small to large satellites. The largest we have successfully deployed into space is a 200 kg satellite, which is a fantastic platform to carry most any payloads, but in a radically cost effective way.

O.H.: What type of stabilization is used by Axelspace microsatellites?

Yasu: We don’t comment on specific internal technology.

O.H.: What type of propulsion systems are integrated with Axelspace microsatellites? Are they mission specific?

Yasu: We don’t comment on specific internal technology.

O.H.: Is Axelspace designing and manufacturing only remote sensing microsatellites?

Yasu: We have been focusing on perfecting our expertise on remote sensing microsatellites. As we are market driven company, our limitation is not technology, but true market demand. Our business team is constantly monitoring the trends in the market and ready to dive into any direction when the time is ripe.

O.H.: Any plans for deep space exploration missions? Could the current bus be repurposed for a deep space mission?

Yasu: We are open for any mission, as long as there is a concrete market and sustainable paying clients. The company never works on a technology, without concrete business visibility.

O.H.: Remote sensing satellites are usually deployed on Sun-synchronous polar orbits. This leads to crowded LEO and increased collision risks above the polar regions. What end-of-life strategies are Axelspace missions using?

Yasu: As a constellation player, we are conscious of EOL operation and complies with the international guidelines on securing the sustainable usage of our orbits.

O.H.: What is AxelGlobe?

Yasu: AxelGlobe is a web based platform to access earth observation data from our proprietary satellite, GRUS, to empower anyone with actionable data to make smart decision.

O.H.: Launching and managing a fleet of 50+ microsatellites in LEO must be a challenging endeavour. Can you elaborate on some of these challenges? How is Axelspace tackling them?

Yasu: Absolutely! There is no shortcut in implementing space technology. To be successful in this business, these are the 4 most important simple, yet critical points to cover:

1. Transformational IDEA to bring value to the market
2. Proven Engineering to bring IDEA into product
3. Solid Financial Resource to bring product into reality
4. Paying clients to have a sustainable business model

To achieve the above, we have inspiring leadership team that brings IDEA to the table, experienced engineer team that can convert anything into a product, insightful finance team to secure the funding and powerful business team to generate revenue for the TEAM.

O.H.: What does the future hold for Axelspace holding? Any exciting plans to share with our readers?

Yasu: When we started the company 11 years ago, no one believed that a startup can actually do anything meaningful in the space industry. Now, after years of hard work, we have 5 operating satellites in space. Next year, we have 4 more confirmed launches and will continue to deploy every year. As a pioneer in the commercial microsatellite world, we will keep working hard and focus on engineering for good.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 4, 2019

Supply Chain in the Cislunar Space

Posted by

 

 

Today we are joined by Logan Ryan Golema, Founder & Principal, and Vishal Singh, Chief Scientist at Lunargistics. Lunargistics is the Space Division of Hercules Supply Chain Protocol, and it is aiming to provide swift logistics in cislunar space. Logan and Vishal were kind to answer a few questions about Lunargistics and the supply chain in the cislunar space.

Orbital Hub: How big of a risk are the counterfeit components in the aerospace supply chain?

Logan Ryan Golema: You’d be surprised, I know I was. The Aerospace industry has three types of companies; those that make their own parts, those that buy their parts, and those that sell parts. And some of them do all three! These industries are often involved with local manufacturers hence the risk of fraud is very high.

Vishal Singh: More often than not everything is OK and well documented, but when there’s a mistake or a fraudulent document on a fake part disaster can happen. Those disasters can be catastrophic as any aerospace structures when in air or in orbit can take lives on land catastrophically. So if a fraudulent document or some error comes it is a man made disaster. When we talk about a space mission; an inch of error in calculation due to fraudulent documents can lead to a war between States or even worse taking lives of thousands of innocents.

O.H.: How is blockchain technology used to mitigate the risk of counterfeit components in the aerospace supply chain?

L.R.G.: Blockchain solves a lot of issues; from fraudulent documents to manufacturing and maintenance of Airplanes to rockets. It is like providing a birth certificate and an IMEI to each component and will result in understanding the root cause of every single problem occurred while in flight or in manufacturing.

V.S.: Let’s take the example of India’s ambitious mission Chandrayaan-2, which failed probably due to failure of power and communication systems. Using the blockchain in the industry will make the “may” in the statement a definite answer to the cause of failure.

O.H.: What blockchain infrastructure is Lunargistics using?

L.R.G.: Lunargistics will be leveraging the Hercules Blockchain Protocol (https://herc.one). Onboarding existing Aerospace companies in Europe and across the globe to this powerful tool with Enterprise level APIs and high performance apps is our aim. We’re set up with the client in mind so they can focus on their mission while we handle the blockchain side of things.

O.H.: What are the defining features of this blockchain infrastructure?

L.R.G.: The interoperability and layering of modular based components. The Hercules Protocol acts sort of like a LAMP stack of old. Today with Lunargistics managing your HERC stack you’ll have:
– indisputable data integrity,
– timestamped uploads,
– files that will be accessible without fail,
– portfolios of persons involved in the manufacturing of something so small as a screw to the powerhouse of an engine.

It’s like having the birth certificate and report card of each component. By having a blockchain system based on the Hercules module will lead in minimising the failures like Israel’s moon mission and Chandrayaan-2.

O.H.: Is it possible to use a public bockchain infrastructure and, at the same time, address the privacy concerns in the aerospace industry?

L.R.G.: We’ve found a way to integrate a hybrid model of privacy while leveraging public chains. On the flip side, we do offer build outs of private infrastructure that can be available just to the client’s network. Its wholly up to the necessities of the mission and we pride ourselves in our ability to adapt.

O.H.: Is the cislunar space the first step? Does Lunargistics have plans to expand beyond that?

L.R.G.: I’d say if we can manage the market on Earth’s Cislunar space we’re doing good. Lunargistics doesn’t just have to be our Moon though. We’d love to scale to Titan or Europa when the timing is right.

V.S.: Even in the dawn of next decade we may have begun our plans of working with NEO mining companies and fulfilling needs of our the Econosphere. Our expert team has enough time to plan giving a robust buffer which will help us reach the desired goals.

O.H.: What does the near future hold for Lunargistics? Can you share any exciting plans with our readers?

L.R.G.: We’re hard at work onboarding the team that will bring us closer to our goals. As a ‘New Space’ company we’re excited to be accepted into the community by your readers.

Any aerospace companies that want to understand blockchain while keeping focused on their own mission should email us at partnerships@lunargistics.lu.

We’re also hiring! So suit up for the next mission and submit your CVs to careers@lunargistics.lu!

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

Credits: Space Concordia Team

 

The Canadian Satellite Design Competition (CSDC) is a Canada-wide competition for teams of university students (undergraduate and graduate) to design and build low-cost satellite. The CSDC plans to subject the satellites in competition to full space qualification testing, and to launch the winning satellite into orbit to conduct science research. The CSDC is modeled after existing university engineering competitions, such as those sponsored by the National Aeronautics and Space Administration (NASA) or the Society for Automotive Engineers (SAE).

 

The winning teammates are members of Space Concordia, a student-run astronautical engineering association based in the Faculty of Engineering and Computer Science at the Concordia University in Montreal. The selection process was conducted by industry experts at the David Florida Laboratory of the Canadian Space Agency in Ottawa, a highly secured facility where commercial and research satellites from the United States and Europe are routinely tested. From twelve teams that initially entered the competition, Space Concordia Team was among only three to go for final testing. Alex Potapov, Mechanical Team Lead, answered a few questions about the Space Concordia cubesat mission.

 

Q: What is the scientific payload for the mission you are designing?
A: Our mission is to study the south Atlantic anomaly, more on that here. We plan on doing this by detecting high energy particles present in the region. Our spacecraft is equipped with a Geiger Counter operating in its proportional mode. This will allow us to determine not only the amount of radiation but also the type of particle present.

 

Q: What hardware do you intend to use? Off-the-shelf boards and software or are you developing your own?
A: Most of our components are of the shelf with the exception of several printed circuit boards. One of the more impressive and less accessible pieces of hardware is the Xiphos Q6, which is a sophisticated FPGA that will be used as the central computer of our satellite. The software is developed internally, and it is based on the Linux operating system.

 

Q: How do you intend to communicate with your satellite from the ground? UHF, Iridium modem, etc.?
A: The spacecraft will communicate with a ground station located near Montreal by means of an antenna that is capable of transmitting and receiving at UHF and VHF armature frequency bands. At this orbit we will have a communication window of about 10-11 min per pass. The communication system was entirely developed by Tiago Leao, PhD Candidate at Concordia University.

 

Credit: Space Concordia Team

 

Q: How do you generate and store power onboard the satellite? Batteries, solar panels? Do you intend to use deployable solar panels?
A: The satellite is equipped with four solar arrays made of 6 ultra high efficiency solar cells each, these cells charge 4 lithium ion batteries. The solar cells are mounted to the body panels of the spacecraft and are not deployable. The entire power system was designed and developed by Ty Boer, an electrical engineering student at Concordia University.

 

Q: Does the attitude determination and control system rely solely on reaction wheels? How do you intend to unload them? Magnetorquers, cold gas thrusters, or have you developed a novel technique?
A: Our approach to ACS does not require any of the above, the philosophy behind the cubesat was to keep it as simple as possible and still perform its mission, therefore a passive ACS system was selected. The system contains of permanent magnets and hysteresis rods, this will allow us to remain stable through communication window. We also have sun sensors for telemetry data.

 

Q: Do you plan to have any orbit control systems onboard? What is the orbital profile of the mission?
A: No, there is no active orbit control on-board. The flight software has a look up table that it uses to determine the spacecraft position, this table is updated through TLE data. We then use this position to execute certain commands such as power on the transmitter to establish communication.

 

Credit: Space Concordia Team / Concordia University

 

Q: How do you plan to control the temperature onboard the satellite?
A: The satellite has a passive cooling system, and active heaters that keep critical components such as the batteries within operating range. Cooling is controlled by careful design of conductive elements and optical surfaces.

 

Q: Who are the members registered with your team? What areas of expertise do they represent?
A: The Space Concordia core team members are: Nick Sweet (Project Manager), Alex Potapov (Mechanical team lead), Tiago Leao (Communication systems lead), Ty Boer (Power system lead), Shawn Stoute (Command and data handling lead), Alex Teodor (Software system lead), Gregory Gibson (ACS and Payload lead), Ivan Ivanov (Manufacturing Lead and Mechanical Design), Mehdi Sabzalian (Procurement lead, Structural analysis, Administration), Robert Jakubowicz (Senior Software Developer), Stefanos Dermenakis (Mechanical design, Thermal analysis), Andrei Jones (Mechanical Harness Design). You can find more about the contributors to the project on our about page.

 

To find out more about the Space Concordia Team, you can visit the Space Concordia web page. More information about the Canadian Satellite Design Competition can be found on the CSDC web page.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 3, 2012

Dalhousie University T-Sat Project

Posted by

 

Credits: Clyde Space

 

 

 

The second Canadian Satellite Design Competition (CSDC) team that answered our invitation to a Q&A is the team from Dalhousie University. Colin O’Flynn, graduate student at Dalhousie University and CTO of the CSDC team, answered our questions.

 

 

 

Q: What hardware do you intend to use? Off-the-shelf boards and software or are you developing your own?
A: We are aiming to use COTS boards and software as much as possible, especially during development. Eventually we will be forced to design and build custom hardware, since there is a very specific form-factor which many COTS boards won’t fit inside. Weight is also a huge issue for us – since many COTS boards contain lots of features we might not need (e.g.: LCD display, Ethernet connector), we can shave some weight by spinning our own board and not wasting space or weight with those features.

Ideally though we’ll just adapt the COTS board design to our satellite, meaning we can use a tested design with minimal work. Not Invented Here (NIH) syndrome is dangerous to engineering projects, so while our current research does show we can’t find the correct form factor, we’ll always be checking the market for new products that might let us avoid needless designs and builds.

 

Q: How do you intend to communicate with your satellite from the ground? UHF, Iridium modem, etc.?
A: Again our satellite has slightly different objectives from a normal commercial satellite, which are primarily concerned with issues such as maximizing bandwidth or minimizing lag, since that gives the best return on investments.

In our project we also want to provide something with a wide scientific and public appeal. To that end we plan on using amateur radio frequencies – this means people around the world can track our satellite. Often amateur radio operators are on the lookout for interesting projects which introduce young students to radio communications. Letting students receiver data from a real satellite overhead does a lot to promote both amateur radio and space, which just maybe will help inspire the next generation of engineers.

Whether this will be in the S-Band or just UHF hasn’t been finalized yet, although there is potential to actually have a beacon running in the more common UHF, and our more bandwidth-intensive comms (e.g.: for downloading payload data) in S-Band. The actual coding technique will use more recent codes (e.g.: turbo or LDPC). Again since this is supposed to be a more ‘innovative’ approach to space, we are working with some of the respected professors and students in our department to get recent advances in both coding and antenna design on our spacecraft.

 

Q: How do you generate and store power onboard the satellite? Batteries, solar panels? Do you intend to use deployable solar panels?
A: The solar panels will not be deployable, but fixed on the outside surface, with batteries storing the charge. This area will use more mature technology. The power system is so critical, and since testing the components such as panels or batteries for the required environmental conditions is beyond our capabilities, we don’t want to rely on experimental designs.

 

Q: Does the attitude determination and control system rely solely on reaction wheels? How do you intend to unload them? Magnetorquers, cold gas thrusters, or have you developed a novel technique?
A: The satellite is very small; many Cubesats only use magnetorquers without reaction wheels. This limits what and where you can correct obviously, so we are still exploring more interesting techniques. We have “penciled in” reaction wheels and magnetorquers, but this could drastically change.

The attitude determination is also planned to be pretty standard. Due to the small size of sensors on the market, we actually plan on outfitting our satellite with a wide range of sensors beyond what is required for attitude determination. We plan on adding a three-axis magnetometer, gyro, and accelerometer, along with GPS receiver. The idea is to provide enough data for postprocessing on Earth for testing new algorithms, experiments, etc.

 

Q: Do you plan to have any orbit control systems onboard? What is the orbital profile of the mission?
A: Nothing planned yet; the orbit we are given is defined as:

The design orbit for the mission has the following parameters (TBC):

• Semi-major Axis: 7078 ± 100 km (600km to 800km altitude)

• Eccentricity: < 0.01
• Inclination: sun-synchronous for the resulting altitude

Launch details won’t be confirmed for some time, so some of this is mostly chance depending what we end up riding along with.

The only possible orbit control system we are investigating would be for deorbiting the satellite at the end of its life. Space is a shared resource, and we want to make sure we aren’t needlessly polluting it with our satellite. If it naturally will deorbit in a reasonable time this won’t be necessary, but it’s something we want to be sure of.

 

Credit: Dalhousie CSDC Team

 

Q: How do you plan to control the temperature onboard the satellite?
A: Currently something we are investigating. Preliminary calculations show we can do this passively to keep things within acceptable limits. Other Cubesats have done this in practice too.

We are trying to use automotive grade parts when possible, which gives us a better temperature range to work with. Understandably this isn’t possible for everything; the solar cells and battery are one obvious example.

 

Q: Who are the members registered with your team? What areas of expertise do they represent?
A: It’s a huge range of skills we have, including over a quarter that aren’t engineers or scientists. Our team is pushing outreach in the community, so for example running programs to introduce kids to space exploration, and the idea that it’s something they could become involved in themselves. Other sections of the team such as marketing, management, and finances are critical to our success, but have nothing to do with the core technical designs.

The technical team has about ten core members. The number of people working on the project though will be higher: we are defining senior year projects, which students will be able to get credit hours for. Time is always a problem in student run projects, so we are trying to make sure people get credit for all this work. Or as I like to point out: once they agree to help, they have to help, because otherwise they will fail the senior year project! It’s one way of retaining “volunteers”.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
March 23, 2012

University of Manitoba T-Sat Project

Posted by

 

Credits: UMSATS Team

 

The Canadian Satellite Design Competition (CSDC) is a Canada-wide competition for teams of university students (undergraduate and graduate) to design and build low-cost satellite. The CSDC plans to subject the satellites in competition to full space qualification testing, and to launch the winning satellite into orbit to conduct science research. The CSDC is modeled after existing university engineering competitions, such as those sponsored by the National Aeronautics and Space Administration (NASA) or the Society for Automotive Engineers (SAE).

 

CSDC has other declared objectives as well:

• to promote education, excellence, research, development, and future capability in space activities in Canada.

• to foster innovation in satellite technologies and inexpensive access to space.

• to seek new applications of technologies and space missions for the betterment of Earth.

 

 

One of the teams in competition is the University of Manitoba Team, UMSATS. Dario Schor, UMSATS Project Lead, answered a few questions about the T-Sat (triple pico-satellite) designed by the University of Manitoba Team.

 

Q: What is the scientific payload for the mission you are designing?
A: The University of Manitoba mission carries two scientific payloads: a Tardigrade Experiment and a Solar Spectroscopy Experiment.

The Tardigrade Experiment aims to test the survivability of Tardigrades (a class of extremophile organisms also known as water bears) in space. This will be accomplished by sending a colony of tardigrades in a cryptobiosis state, exposing them to the harsh space environment, reviving them in orbit, and monitoring their behavior by taking bursts of images at predetermined times throughout the first 30-40 days of the mission. The novelty of the experiment is in the on-board revival of the organisms that has not been done in any satellite, let alone a nanosatellite that is only 10x10x30cm.

The Solar Spectroscopy Experiment measures the intensity of light emitted from the Sun over the ultraviolet to near-infrared regime (350nm to 1100 nm) to add and compare the results to theoretical models and data collected by other missions. This type of experiment has been performed on a number of missions with larger spacecrafts, thus demonstrating comparable results on a smaller and cheaper platform can open the door for many other small research groups to conduct similar experiments to collect and analyze their own data.

 

Credit: Scott McKay and Ravindi Gunasekara

 

Q: What hardware do you intend to use? Off-the-shelf boards and software or are you developing your own?
A: The spacecraft uses off-the-shelf components in custom designs for all subsystem boards. The extra efforts and risks from custom designs, manufacturing, and testing are offset by the experience gained by the students on the team. Some examples of the components used include:

• The Command & Data Handling (CDH) subsystem uses the TI MSP430 microprocessor interfaces to a watchdog timer, real-time clock, and memory modules for their operations.

• The Communications (COM) subsystem uses stripped down version of a commercial-off-the-shelf handheld from Yaesu that operates on amateur frequencies. Digital packets are created and encoded using a custom Terminal Node Controller based on the TI MSP430 microprocessor.

• The Power (PWR) subsystem uses fixed solar panels, an off-the-shelf battery, and a custom protection and distribution system to provide power to the spacecraft.

• The Structure (STR) is being built in-house out of Aluminum 6061. The custom design was required to support the two payload’s requirements for heat, volume, and position within the spacecraft.

• The Thermal (THM) subsystem relies primarily on insulation for its components and uses an off-the-shelf heater to maintain the Tardigrade experiment from freezing.

• The Attitude Determination and Control (ADC) subsystem uses off-the-shelf sensors, such as the Honeywell HMC2003 magnetometer, with customized designs for magnetic torque rods to control the orientation of the spacecraft.

 

Credit: UMSATS Team

 

Q: How do you intend to communicate with your satellite from the ground? UHF, Iridium modem, etc.?
A: The spacecraft is designed to communicate with amateur radio stations conforming to the GENSO standard (genso.org). That means using the 2m band (144-148MHz) for uplink commands, and the 70cm (435-438MHz) for downlink telemetry and science, similar to many AMSAT satellites such as AO-51, HO-68, and FO-29. The spacecraft configurations with the two antennas is shown in Fig. 3. All packets are encoded using the AX.25 protocol that is compatible with most amateur ground stations, such as the University of Manitoba Satellite Ground Station.

 

Credit: UMSATS Team

 

Q: How do you generate and store power onboard the satellite? Batteries, solar panels? Do you intend to use deployable solar panels?
A: The spacecraft is designed to operate with a minimum of 4 Watts. Power is generated using fixed solar panels on all faces of the spacecraft and storing it in an on-board battery to power the spacecraft during eclipses. The fixed panels provide sufficient power for the mission without the added risks from deployable panels.

 

Q: Does the attitude determination and control system rely solely on reaction wheels? How do you intend to unload them? Magnetorquers, cold gas thrusters, or have you developed a novel technique?
A: The Attitude Determination and Control (ADC) subsystem uses a magnetometer and Sun sensors to determine the orientation of the spacecraft. Custom built magnetic torquers are used to control the orientation. The torquers are implemented in multilayered flat coils enabling easy integration of the torque rods with the rest of the system.

 

Q: Do you plan to have any orbit control systems onboard? What is the orbital profile of the mission?
A: There is no orbit control system onboard. This would be very difficult to achieve in a small 10x10x30 cm spacecraft with a maximum mass of 4kg as thrusters and fuel would require a large portion of the mass and volume leaving little room for scientific payloads.

The current goal is for a sun-synchronous orbit with an inclination of 98 degrees, eccentricity ~0, and altitude of approx. 600-800km. A sample profile for a 24 hr period for the mission is shown in Fig. 4. The field of view from the University of Manitoba Satellite Ground Station (operational since 2008) shows the contact points over the 24 hr period.

 

Credit: UMSATS Team

 

Q: How do you plan to control the temperature onboard the satellite?
A: The thermal control is mostly passive except for a heater attached to the Tardigrade payload to ensure the water and nutrients for the water bears do not freeze. Analysis of the temperature profiles revealed that the remaining components can stay within their allowed operating temperatures using small layers of insulation.

 

Q: Who are the members registered with your team? What areas of expertise do they represent?
A: The University of Manitoba team has over 100 registered students from Engineering, Science, Business, Architecture, Art, and Graduate Studies that contributed to the project since October 2010 with the largest group coming from the Department of Electrical and Computer Engineering. This includes students from first year all the way through Ph.D. programs, thus providing a strong core for this mission as well as laying the foundation for future missions at the University of Manitoba. At the moment, there is a core group of 35 students that are working on various aspects of the project.

The students are supported by a team of over 50 advisors from academia, industry (specifically aerospace from Magellan Bristol Aerospace), government, military, amateur radio community, and others. The advisors attend regular review meetings for the full project and some of the subsystems to provide feedback on the design.

 

 

To find out more about the UMSATS, you can visit the UMSTAS web page, or contact Dario Schor. More information about the Canadian Satellite Design Competition can be found on the CSDC web page.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis