OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Exploration category

February 18, 2025

Artemis II

Posted by

 

 

Wikipedia dicit:

Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled to take place no earlier than April 2026. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 29, 2025

Remember Fallen Heroes

Posted by

 

 

They will always be remembered…

Apollo 1 (January 27, 1967)

Virgil “Gus” Grissom – Commander, Edward White – Command Pilot, Roger Chaffee – Pilot

STS-51 L (January 28, 1986)

Francis R. Scobee – Commander, Michael J. Smith – Pilot, Judith A. Resnik – Mission Specialist 1, Ellison Onizuka – Mission Specialist 2, Ronald E. McNair – Mission Specialist 3, Gregory B. Jarvis – Payload Specialist 1, Sharon Christa McAuliffe – Payload Specialist 2

STS-107 (February 1, 2003)

Rick D. Husband – Commander, William C. McCool – Pilot, Michael P. Anderson – Payload Commander, David M. Brown – Mission Specialist 1, Kalpana Chawla – Mission Specialist 2, Laurel Clark – Mission Specialist 3, Ilan Ramon – Payload Specialist 1

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Sierra Space dicit:

We have successfully completed our sixth stress test and fourth Ultimate Burst Pressure (UBP) test for our LIFE® 10 commercial space station technology, achieving a rupture at 255 psi, the highest pressure yet. This test exceeded NASA’s Factor of Safety recommendations, demonstrating a safety factor greater than 16x in Low Earth Orbit (LEO) and 23x in lunar environments. Our team continues to lead in the development of expandable structures for various space applications, as we build the world’s first commercial space station.

Video credit: Sierra Space

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
December 30, 2024

Inflatable Habitats

Posted by

 

 

Lockheed Martin dicit:

We’re developing advanced inflatable softgoods technologies to support astronauts living and working in space. These durable, spacious and safe modules are designed for a variety of mission needs. Built entirely by our expert team, our inflatable habitats offer adaptability, repeatability and cost-effective manufacturing—paving the way for the future of space habitation.

Video credit: Lockheed Martin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 24, 2024

Dream Chaser Tenacity

Posted by

 

 

Wikipedia dicit:

Dream Chaser Tenacity (DC101) is the first Dream Chaser spacecraft expected to fly in space. Manufactured by the Sierra Nevada Corporation, it will first fly to the International Space Station as part of the SNC Demo-1 mission in 2025, under the CRS-2 contract.

The Sierra Nevada Corporation was awarded a CRS-2 contract for by NASA for six operational resupply spaceflights to the International Space Station. SNC Demo-1 is a demo flight that will precede the operational resupply flights if the mission is successful.

Tenacity and other Dream Chasers will be mated with a Shooting Star module, which will provide an additional 10,000 lb (4,500 kg) of payload capacity, in addition to the 2,000 lb (910 kg) carried by the space plane. The module will be separated from the Dream Chaser prior to reentry and burn up in the atmosphere, while the Dream Chaser vehicle will perform a runway landing to be reused.

Dream Chaser is an American reusable lifting-body space plane developed by Sierra Space. Originally intended as a crewed vehicle, the Dream Chaser Space System is set to be produced after the Dream Chaser Cargo System cargo variant is operational. The crewed variant is planned to carry up to seven people and cargo to and from low Earth orbit. Sierra plans to manufacture a fleet of the space plane.

The Dream Chaser was originally started in 2004 as a project of SpaceDev, a company that was later acquired by the Sierra Nevada Corporation (SNC) in 2008. In April 2021 the project was taken over by the Sierra Space Corporation (SSC), which at that time was spun off from the Sierra Nevada Corporation as its own fully independent company.

The cargo Dream Chaser is designed to resupply the International Space Station with both pressurized and unpressurized cargo. It is intended to be launched vertically on the Vulcan Centaur rocket and autonomously land horizontally on conventional runways. A proposed version to be operated by European Space Agency (ESA) would launch on an Arianespace vehicle.

The Dream Chaser space plane is designed to be launched on the top of a typical rocket and land like an airplane on a runway. The design has heritage going back decades. Currently, the Dream Chaser will resupply the ISS with cargo.

On-orbit propulsion of the Dream Chaser was originally proposed to be provided by twin hybrid rocket engines capable of repeated starts and throttling. At the time, the SSC’s predecessor, the SNC was also developing a similar hybrid rocket for Virgin Galactic’s SpaceShipTwo. In May 2014, SNC involvement in the SpaceShipTwo program ended.

After the acquisition of Orbitec LLC in July 2014, Sierra Nevada Corporation announced a major change to the propulsion system. The hybrid rocket engine design was dropped in favor of a cluster of Orbitec’s Vortex engines. The new unit would be a pressure-fed three-mode engine. At low- and mid-power regimes it uses monopropellant fuel – hydrogen peroxide – and in high-power demand, the engine adds injection of RP-1 fuel. This increased thrust will be useful to shorten the de-orbit burn duration of the Dream Chaser.

Its thermal protection system (TPS) is made up of silica-based tiles (for most of the belly and upper portion of the heat shield), and a new composite material called Toughened Unipiece Fibrous Reusable Oxidation Resistant Ceramic (TUFROC) to cover the nose and leading edges.

In 2019, it was announced that an expendable Shooting Star cargo module would be part of the Dream Chaser cargo system for CRS-2 flights. The module is a 15-foot-long (4.6 m) attachment to Dream Chaser that will allow the spacecraft to carry an additional 10,000 pounds (4,500 kg) of pressurized and unpressurized cargo to ISS. The module supports disposal of unwanted cargo by burning up upon re-entry.

In addition to carrying cargo, the Shooting Star module includes solar panels that supply up to 6 kW of electrical power. It also supplies active and passive thermal management; provides Dream Chaser translation and rotation capability via six mounted thrusters; and supports berthing or docking (in different configurations) to the ISS. Access from ISS to Dream Chaser will involve crew passing through Shooting Star (which supports a shirt-sleeve environment) and through a hatch that separates Shooting Star from Dream Chaser. Sierra Nevada says the module is capable of additional types of missions in LEO or to cis-lunar destinations; they have developed a free-flying variant with additional capabilities.

Video credit: Sierra Space

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 28, 2024

The EVA Suit

Posted by

 

 

Wikipedia dicit:

Extravehicular activity (EVA) is any activity done by an astronaut in outer space outside a spacecraft. In the absence of a breathable Earthlike atmosphere, the astronaut is completely reliant on a space suit for environmental support. EVA includes spacewalks and lunar or planetary surface exploration (commonly known from 1969 to 1972 as moonwalks). In a stand-up EVA (SEVA), an astronaut stands through an open hatch but does not fully leave the spacecraft. EVAs have been conducted by the Soviet Union/Russia, the United States, Canada, the European Space Agency and China.

On March 18, 1965, Alexei Leonov became the first human to perform a spacewalk, exiting the Voskhod 2 capsule for 12 minutes and 9 seconds. On July 20, 1969, Neil Armstrong became the first human to perform a moonwalk, outside his lunar lander on Apollo 11 for 2 hours and 31 minutes. In 1984, Svetlana Savitskaya became the first woman to perform a spacewalk, conducting EVA outside the Salyut 7 space station for 3 hours and 35 minutes. On the last three Moon missions, astronauts also performed deep-space EVAs on the return to Earth, to retrieve film canisters from the outside of the spacecraft. American Astronauts Pete Conrad, Joseph Kerwin, and Paul Weitz also used EVA in 1973 to repair launch damage to Skylab, the United States’ first space station.

EVAs may be either tethered (the astronaut is connected to the spacecraft; oxygen and electrical power can be supplied through an umbilical cable; no propulsion is needed to return to the spacecraft), or untethered. Untethered spacewalks were only performed on three missions in 1984 using the Manned Maneuvering Unit (MMU), and on a flight test in 1994 of the Simplified Aid For EVA Rescue (SAFER), a safety device worn on tethered U.S. EVAs.

Video credit: SpaceX

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis