OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Lunar Explorers category

February 18, 2025

Artemis II

Posted by

 

 

Wikipedia dicit:

Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled to take place no earlier than April 2026. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 1, 2025

Komatsu Lunar Machines

Posted by

 

 

Komatsu dicit:

Here is a sneak peak of Komatsu on the moon. At the dawn of space exploration, Komatsu is taking on a challenge to develop a machine whose line of job is construction on the moon! The study of lunar construction equipment utilises the results of research and development commissioned by the Project for Promoting the Development of Innovative Technologies for Outer Space Autonomous Construction (A Japanese government project lead-managed by MLIT with the collaboration of MEXT).

Video credit: Komatsu

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Sierra Space dicit:

We have successfully completed our sixth stress test and fourth Ultimate Burst Pressure (UBP) test for our LIFE® 10 commercial space station technology, achieving a rupture at 255 psi, the highest pressure yet. This test exceeded NASA’s Factor of Safety recommendations, demonstrating a safety factor greater than 16x in Low Earth Orbit (LEO) and 23x in lunar environments. Our team continues to lead in the development of expandable structures for various space applications, as we build the world’s first commercial space station.

Video credit: Sierra Space

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 24, 2024

NASA LTV

Posted by

 

 

Wikipedia dicit:

The Lunar Terrain Vehicle (LTV) is an unpressurized rover being developed for NASA that astronauts can drive on the Moon while wearing their spacesuits. The development of the LTV is a part of NASA’s Artemis Program, which involves returning astronauts to the Moon, specifically the lunar south pole, by 2026, but the LTV will not fly until Artemis V in 2030 at the earliest. The LTV will be the first crewed lunar rover developed by NASA since the Lunar Roving Vehicle used during the Apollo program.

On February 6, 2020, NASA issued a request, seeking industry feedback on relevant state-of-the-art commercial technologies and acquisition strategies for a new Lunar Terrain Vehicle. NASA also stated in the request that they want the new LTV to draw on recent innovations in electric vehicle energy storage and management, autonomous driving, and extreme environment resistance.”

On August 31, 2021, NASA released another request to private companies for additional input on approaches and solutions for a vehicle to transport Artemis astronauts around the lunar south pole. NASA also asked if American companies are interested in providing the LTV as a commercial service, or as a product NASA would purchase and own.

On November 2, 2022, NASA issued a draft request for proposals (RFP) for the LTV as a service (LTVS). The draft was open for feedback until December 1, with a planned final RFP release date of on or about February 8, 2023, a proposals due date approximately 30 days later, and an anticipated contract award date of on or about July 19.

On January 27, 2023, NASA published an update stating that it anticipated that the LTVS final RFP release will be delayed until no later than May 26. On May 26, NASA released its services request for the Lunar Terrain Vehicle, with proposals due on July 10 and a contract award scheduled for November. On October 30, NASA delayed the award of the contract to March 31, 2024, to allow additional time to evaluate proposals.

On April 3, 2024, NASA announced that Intuitive Machines, Lunar Outpost and Venturi Astrolab are the three companies developing the LTV as part of a 12-month feasibility and demo phase. A source selection statement by NASA provided further details on cost and overall feasibility on 9 April, 2024. The Intuitive Machines proposal was for $1.692 billion, Lunar Outpost for $1.727 billion and Astrolab for $1.928 billion to develop the vehicle.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
December 21, 2023

Commercial Lunar Payload Services

Posted by

 

 

NASA dicit:

NASA is working with several American companies to deliver science and technology to the lunar surface through the Commercial Lunar Payload Services (CLPS) initiative.

These companies, ranging in size, bid on delivering payloads for NASA. This includes everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon. Under Artemis, commercial deliveries beginning in 2023 will perform science experiments, test technologies, and demonstrate capabilities to help NASA explore the Moon as it prepares for human missions. CLPS contracts are indefinite delivery, indefinite quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
November 3, 2023

NASA’s Moon Lab

Posted by

 

 

NASA dicit:

The Lunar Lab and Regolith Testbed currently houses two large indoor “sandboxes” filled with tons of simulated lunar dust. With both testbeds, most areas on the Moon can be simulated with a high degree of accuracy.

The facility’s first sandbox measures approximately 13 feet by 13 feet by 1.5 feet (4 meters by 4 meters by 0.5 meter) and is filled with eight tons of Johnson Space Center One simulant (JSC-1A) – making it the world’s largest collection of the material. The JSC-1A simulant mimics the Moon’s mare basins and is dark grey in color.

The facility was recently upgraded to include a second, larger testbed, filled with more than 20 tons of Lunar Highlands Simulant-1 (LHS-1), which is light grey to simulate the lunar highlands. It measures 62 feet by 13 feet by 1 foot (19 meters by 4 meters by 0.3 meter), and can be reconfigured to be a smaller, but deeper, testbed.

Sometimes researchers painstakingly shape the dust with hand tools to recreate, as accurately as possible, features astronauts and rovers are likely to encounter. These include tiny pits and small craters measuring as small as a couple feet to a few yards across. It may also mean placing small rocks and other debris to resemble actual places observed by Moon-orbiting spacecraft.

One feature that makes the Testbed truly unique, is a set of bright, high-power lights that simulate the Sun’s glaring rays as they are cast across the lunar landscape. Researchers can accurately recreate lighting conditions that are relevant to locations on the Moon’s poles and across a range of lunar times – past, present, or future.

Established in 2009 by NASA’s Centennial Challenges Program as the Lunar Regolith Testbed in the NASA Research Park at Ames, the facility was created through a partnership between the then-called NASA Lunar Science Institute (now the agency’s Solar System Exploration Research Virtual Institute) and the California Space Authority. Since then, it’s been used year-round by researchers seeking a high-fidelity environment to test hardware designs intended for the lunar surface, including projects within the agency’s Advanced Exploration Systems and Game Changing Development technology programs.

Video credit: NASA’s Ames Research Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis