OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Lunar Explorers category

 

 

Mea AI adiutor dicit:

From the silent distance of Earth, the Moon appears as a smooth, silvery sphere. But for those who’ve studied its surface up close, either through telescopes or from the historic Apollo missions, one thing becomes clear: the Moon is blanketed in a fine, powdery material known as lunar regolith. This layer of fragmented debris has formed over billions of years and tells the story of a world shaped by ceaseless impacts, solar radiation, and a complete lack of atmosphere. Though it may look like simple dust, lunar regolith holds profound significance for planetary scientists—and increasingly, for engineers preparing for a return to the Moon.

The composition of this mysterious gray covering is more complex than its appearance might suggest. It’s formed from the relentless barrage of micrometeorites pulverizing the surface, the violent birth of impact craters, and the subtle chemical alterations caused by solar wind. The result is a chaotic mix of crushed rock fragments, jagged mineral grains, and tiny glass beads born from high-temperature impacts. Common minerals like plagioclase feldspar, pyroxene, and olivine are scattered throughout, along with ilmenite, which contains valuable titanium and oxygen. One particularly intriguing component is the presence of nanophase iron—ultra-small iron particles that form on the surface of grains through a process called space weathering. These particles affect how the regolith reflects sunlight, giving the Moon its distinctively dull, gray tone when seen from afar.

Scientists first gained direct access to lunar regolith during the Apollo missions between 1969 and 1972. Astronauts collected samples from multiple landing sites, eventually bringing back a treasure trove of 382 kilograms of Moon rocks and soil. These samples became the foundation of modern lunar science. Laboratories around the world analyzed them, revealing not only their mineral makeup but also their mechanical properties, such as how they compact, crumble, or cling. In the decades since, robotic missions—like the Soviet Luna series and, more recently, China’s Chang’e landers—have supplemented this knowledge, some even returning new samples from previously unexplored regions.

While bringing the regolith back to Earth has been invaluable, researchers have also developed techniques for studying it remotely. Orbiters equipped with spectrometers and radar instruments, such as NASA’s Lunar Reconnaissance Orbiter, have helped map the Moon’s surface in great detail. These tools measure reflected light or radio waves to determine mineral composition and estimate the depth and distribution of regolith across the Moon. Additionally, scientists have created regolith simulants on Earth using volcanic ash and crushed basalt to replicate the Moon’s soil. These substitutes allow researchers to test new technologies for excavation, construction, and life support systems without needing to access the real thing.

As we look ahead to renewed lunar exploration, the presence of regolith is both a scientific resource and a serious engineering concern. During the Apollo era, astronauts quickly discovered just how tenacious and troublesome lunar dust could be. It clung to everything—spacesuits, tools, visors—and wore down seals and joints with its abrasiveness. Inhaled accidentally, it caused respiratory irritation. Dust worked its way into every crevice of the lunar module, leading to worries about long-term equipment degradation.

Today, mission planners must solve these problems with more permanent outposts in mind. Any lander or rover operating on the Moon must be built to withstand the grinding effect of fine regolith particles. Rovers need sealed joints, dust-repelling surfaces, and self-cleaning mechanisms. Launch and landing also present a challenge. The powerful engine exhaust of a landing spacecraft can blast regolith at high speeds in all directions, potentially damaging nearby infrastructure or fouling instruments. Ideas such as pre-built landing pads or robotic regolith-clearing systems are now under consideration to protect future lunar bases.

Despite these concerns, regolith might also be part of the solution. Engineers and scientists are exploring ways to turn this ubiquitous material into a resource. Some are working on extracting oxygen from minerals like ilmenite, which could support life-support systems or fuel production. Others are developing 3D-printing techniques that use regolith as the raw material to build structures—walls, roads, or even radiation shields. One of the most promising ideas is to bury habitats beneath regolith to protect astronauts from harmful space radiation, using the Moon’s own soil as a natural barrier.

In many ways, the regolith is a record keeper, preserving the ancient history of the Moon in its layered dust. Every speck of this gray soil has been shaped by cosmic forces: impacts, solar particles, and the slow evolution of a dead world. But as NASA, international partners, and private companies move closer to establishing a human presence on the Moon, this dusty blanket becomes more than a scientific curiosity. It is both a challenge to overcome and a resource to harness—a reminder that even on a lifeless surface, the smallest grains can hold the biggest implications for the future of space exploration.

Video credit: NASA Langley Research Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 14, 2025

LISTER and LPV

Posted by

 



 

Mea AI adiutor dicit:

Honeybee Robotics, a subsidiary of Blue Origin, contributed two innovative instruments—LISTER and LPV—to Firefly Aerospace’s Blue Ghost Mission 1, which successfully landed on the Moon in March 2025 as part of NASA’s Commercial Lunar Payload Services (CLPS) program. These instruments are pivotal in advancing our understanding of the Moon’s thermal properties and developing efficient regolith sampling techniques for future lunar exploration.

LISTER: Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity

LISTER is designed to measure the heat flow from the Moon’s interior, providing insights into the Moon’s thermal evolution and internal structure. By assessing how heat escapes from the lunar interior, scientists can infer details about the Moon’s composition and geological history.

LISTER is a collaborative effort between Honeybee Robotics and Texas Tech University. It employs a sophisticated pneumatic drill capable of penetrating up to 3 meters into the lunar regolith. At every 0.5-meter interval, the drill pauses to deploy a custom-built thermal probe that measures temperature gradients and thermal conductivity at various depths. LISTER weighs approximately 4.3 kilograms.

During its operation on the lunar surface, LISTER successfully drilled into the regolith and collected thermal data at multiple depths. These measurements are crucial for understanding the Moon’s internal heat flow and contribute to models of its thermal and geological evolution. The data also aid in assessing the Moon’s suitability for future human habitation and resource utilization.

LPV: Lunar PlanetVac

LPV is a technology demonstration aimed at efficiently collecting lunar regolith samples. Its success is vital for future missions that require in-situ resource utilization or sample return capabilities.

LPV is installed on one of the Blue Ghost lander’s legs. It utilizes a burst of compressed gas to dislodge and propel regolith particles into a collection chamber. Capable of collecting particles up to 1 centimeter in diameter. Features a tube that transports the collected material to onboard instruments for analysis or storage.

LPV successfully demonstrated its ability to collect and transfer lunar soil samples using its gas-driven mechanism. The efficient and contamination-free sampling process validates LPV’s potential for future missions that aim to analyze or return lunar materials to Earth. Its performance also provides valuable data for refining regolith collection techniques in low-gravity environments.

Blue Ghost Mission 1, which landed in Mare Crisium, carried a total of ten NASA payloads, including LISTER and LPV. The mission operated for a full lunar day (~14 Earth days), during which all instruments performed their designated tasks. The successful deployment and operation of LISTER and LPV not only achieved their scientific objectives but also demonstrated the viability of these technologies for future lunar exploration endeavors. Their contributions are instrumental in paving the way for sustained human presence on the Moon and the development of lunar resources.

Video credit: Blue Origin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 29, 2025

Artemis Lander Motor Study

Posted by

 

 

NASA dicit:

Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently completed a test fire campaign of a 14-inch hybrid rocket motor. The rocket motor ignites using both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust. Data from the test campaign will help teams prepare for future flight conditions when commercial human landing systems, provided by SpaceX and Blue Origin, touch down on the Moon for crewed Artemis missions.

The hybrid motor was test fired 30 times to ensure it will reliably ignite in preparation for testing later this year at NASA’s Langley Research Center in Hampton, Virginia. This video shows the 28th test, conducted in February, during which the 3D-printed motor fired for six seconds.

Video credit: NASA’s Marshall Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 28, 2025

Artemis II Rocket Core Stage

Posted by

 

 

NASA dicit:

​Technicians use massive cranes inside the Vehicle Assembly Building at NASA Kennedy’s Space Center in Florida to lift the fully assembled SLS (Space Launch System) core stage vertically 225-feet above the ground from High Bay 2 to a horizontal position in the facility’s transfer aisle. In the transfer aisle, technicians conducted final preparations of the core stage before it was integrated with the completed twin solid rocket booster segments. NASA is implementing a more efficient stacking process to support future missions to the Moon beginning with the Artemis II test flight.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 22, 2025

Blue Ghost Mission 1 Concludes

Posted by

 

 

Mea AI adiutor dicit:

​Firefly Aerospace’s Blue Ghost Mission 1, launched on January 15, 2025, and landed on the Moon on March 2, 2025, marked a significant milestone as the first fully successful commercial lunar landing. Operating for over 14 Earth days on the lunar surface, the mission achieved all its objectives, collecting and transmitting approximately 119 gigabytes of data, including high-definition images of lunar phenomena such as sunsets and a total solar eclipse.​

The Blue Ghost lander carried ten NASA-sponsored science and technology payloads designed to advance lunar exploration and prepare for future human missions:​

Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER): Developed by Honeybee Robotics, LISTER utilized pneumatic drilling to measure the Moon’s thermal gradient and conductivity up to depths of 2–3 meters, providing insights into the lunar interior’s heat flow.

Lunar PlanetVac (LPV): Also from Honeybee Robotics, LPV demonstrated a rapid, low-mass method for collecting and sorting lunar regolith using bursts of gas, aiding in sample collection for analysis or potential return to Earth.​

Next Generation Lunar Retroreflector (NGLR): Provided by the University of Maryland, this instrument served as a target for Earth-based lasers to precisely measure the Earth-Moon distance, enhancing our understanding of lunar geophysics and fundamental physics.​

Regolith Adherence Characterization (RAC): Developed by Aegis Aerospace, RAC assessed how lunar dust adheres to various materials over time, informing the design of dust-resistant surfaces for future lunar equipment.​

Radiation Tolerant Computer (RadPC): From Montana State University, RadPC tested a computing system capable of withstanding the Moon’s harsh radiation environment, crucial for long-duration lunar missions.​

Electrodynamic Dust Shield (EDS): Developed by NASA’s Kennedy Space Center, EDS employed electric fields to remove dust from surfaces, demonstrating a self-cleaning technology for lunar habitats and instruments.​

Lunar Environment Heliospheric X-ray Imager (LEXI): A collaboration between Boston University, NASA Goddard Space Flight Center, and Johns Hopkins University, LEXI captured X-ray images of interactions between the solar wind and Earth’s magnetosphere, contributing to space weather research.​

Lunar Magnetotelluric Sounder (LMS): From Southwest Research Institute, LMS measured electric and magnetic fields to study the Moon’s mantle structure and composition, enhancing our knowledge of lunar geology.​

Lunar GNSS Receiver Experiment (LuGRE): A joint effort by the Italian Space Agency and NASA Goddard Space Flight Center, LuGRE tested the reception of GPS and Galileo signals on the Moon, paving the way for lunar navigation systems.​

Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS): Developed by NASA Langley Research Center, SCALPSS recorded high-resolution images of the lander’s descent, analyzing the effects of rocket plumes on the lunar surface to inform future landing strategies.​

Blue Ghost Mission 1’s success not only demonstrated the viability of commercial lunar missions but also provided valuable data to support NASA’s Artemis program and the broader scientific community’s understanding of the Moon.

Video credit: NASA’s Marshall Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 16, 2025

SCALPSS Captures Landing on the Moon

Posted by

 

 

Wikipedia dicit:

Firefly Aerospace Blue Ghost, or simply Blue Ghost, is a class of lunar landers designed and manufactured by American private company Firefly Aerospace. Firefly plans to operate Blue Ghost landers to deliver small payloads to the surface of the Moon. The first Blue Ghost mission was launched at 1:11 a.m. EST (06:11 UTC) on January 15, 2025. It successfully landed on the Moon on March 2, 2025. The landers are named after the firefly species Phausis reticulata, known as blue ghosts.

Firefly is the prime contractor for lunar delivery services using Blue Ghost landers. Firefly provides or subcontracts Blue Ghost payload integration, launch from Earth, landing on the Moon and mission operations. Firefly’s Cedar Park facility serves as the company’s mission operations center and the location of payload integration. Firefly operates a 50,000-square-foot (4,600 m2) spacecraft facility with two mission control centers and an ISO-8 cleanroom to accommodate multiple landers.

Blue Ghost has four landing legs. It supplies data, power, and thermal resources for payload operations through transit to the Moon, in lunar orbit, and on the lunar surface. The spacecraft is designed and built to be easily adapted to each customer’s cislunar needs. Blue Ghost can be customized to support larger, more complex missions, including lunar night operations, surface mobility, and sample return, and is compatible with multiple launch providers. Firefly asserts that in-house end-to-end manufacturing and testing of the Blue Ghost structure is a differentiator among the CLPS landers.

NASA awarded Firefly the first Blue Ghost lunar delivery task order in February 2021 as part of the Commercial Lunar Payload Services (CLPS) initiative.

Video credit: NASA Langley Research Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis