OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Robotic Exploration category

 

 

Mea AI adiutor dicit:

The Mars Sample Return (MSR) campaign is one of the most ambitious robotic exploration efforts ever conceived: to retrieve a selection of scientifically curated Martian rocks, soils, and atmospheric samples—collected and cached by NASA’s Perseverance rover—and return them safely to Earth. This bold undertaking, executed in partnership with the European Space Agency (ESA), promises to revolutionize what we know about Mars’ geological history, its potential for past life, and even hazards and opportunities for future human missions.

On a scientific level, MSR seeks to preserve the integrity of these precious samples—protecting them from contamination, temperature extremes, and degradation—so that they arrive on Earth in a form as pristine as possible. Once returned, the specimens can be studied with sophisticated technologies unavailable to rovers, unlocking insights into Mars’ formation, its chemical and mineral makeup, and whether the Red Planet ever harbored life. The mission also holds strategic value for future human exploration: by characterizing martian dust, chemistry, and potential biohazards, MSR lays groundwork for crewed missions to Mars.

The MSR campaign is composed of several interlocking elements. First, the Perseverance rover (part of the earlier Mars 2020 mission) has been drilling and caching samples in sealed titanium tubes, left behind on the Martian surface. A future lander will touch down near Perseverance and deploy a robotic arm to recover those tubes, then transfer them into a container embedded in the nose of a Mars Ascent Vehicle (MAV).

Once sealed, the MAV will launch from Mars, sending the container into Martian orbit. There, an Earth Return Orbiter—provided by ESA—will rendezvous and capture it, transfer the canister into a highly reliable Earth-entry capsule, and fire toward home. Back on Earth, the sample capsule is designed for a high-integrity reentry and safe recovery, after which the Martian materials will be transported to a specialized Sample Receiving Facility for detailed study.

The technical challenges are immense. Launching a rocket (the MAV) from another planet, achieving orbital rendezvous with a sample container, and then returning that payload across deep space demands precision, reliability, and robust planetary protection protocols. The mission also carries significant cost risk: earlier architectures were projected to cost around $11 billion, but NASA is now exploring more streamlined and cost-effective designs that could reduce the price to between $6 billion and $7 billion.

As of early 2025, NASA has not finalized the mission’s design. A strategic review is underway, and by mid-2026 the agency expects to decide between alternative architectures: one using traditional NASA lander systems, the other leveraging commercial partners and lighter launch vehicles. The timeline for returning the samples to Earth could shift: earlier plans had targeted a return in the early 2030s, but realities of budget, risk, and design could push that into the mid- to late 2030s.

If successful, the Mars Sample Return mission would represent a quantum leap in our ability to study Mars. Analyses done on Earth can apply far more sophisticated techniques than what any rover can carry, from ultrasensitive microscopes to mass spectrometers optimized for detecting organic molecules. These studies could finally answer whether Mars harbored life, how its climate and geology evolved, and how its atmosphere interacted with solar wind and cosmic radiation over eons.

From an exploration standpoint, MSR also paves the way for human missions. Understanding the composition of martian dust, potential biohazard risks, and geologic diversity is vital to designing habitats, life support, and mission strategies. By returning real Martian matter to Earth, the mission also supports planetary protection protocols that future human explorers will need to navigate.

In sum, MSR is more than a campaign—it’s a bridge between robotic exploration and human return, a scientific leap, and a testament to international cooperation. If executed well, it could bring back Mars in a jar, unlocking secrets that only the Red Planet holds.

Video credit: Lockheed Martin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Asteroid (52246) Donaldjohanson is a small but significant body located in the main asteroid belt between Mars and Jupiter. Though it may not have the fame of larger or more compositionally unique asteroids, Donaldjohanson stepped into the scientific spotlight thanks to its pivotal role in NASA’s ambitious Lucy mission — a 12-year journey to explore the Trojan asteroids that share Jupiter’s orbit. Before Lucy reaches its primary Trojan targets, it first encountered Donaldjohanson, making it a key object of study in humanity’s effort to understand the solar system’s early history.

Discovery

Asteroid Donaldjohanson was discovered on March 2, 1981, by astronomer Schelte “Bobby” Bus at the Siding Spring Observatory in Australia. Initially designated 1981 EQ5, the asteroid was later named in honor of Dr. Donald Johanson, the paleoanthropologist best known for co-discovering the fossilized remains of Australopithecus afarensis, famously known as Lucy, in Ethiopia in 1974.

This naming decision was particularly meaningful to NASA, as their Lucy spacecraft, launched in 2021, carries a similar goal: to uncover the fossils of the solar system—namely, the Trojan asteroids, which are thought to be leftover building blocks from planetary formation. Naming the asteroid after Johanson creates a poetic link between the exploration of human origins and the origins of our solar system.

Location and Characteristics

Donaldjohanson resides in the inner region of the main asteroid belt, at a semi-major axis of approximately 2.39 astronomical units (AU) from the Sun. Its orbit is relatively circular and stable, with a low eccentricity and inclination, placing it within the Erigone asteroid family, a large group of stony asteroids in the inner main belt.

Though smaller and less well-studied than some of its larger neighbors, Donaldjohanson’s value lies in its convenience and timing—it is perfectly positioned to serve as a flyby target for the Lucy spacecraft en route to the outer solar system.

The Lucy Mission Flyby

NASA’s Lucy spacecraft has successfully completed a flyby of asteroid Donaldjohanson, providing unprecedented insights into this intriguing celestial body. Lucy performed a close flyby at a distance of approximately 600 miles (960 kilometers), capturing detailed images and data.

The flyby is particularly exciting because very few main belt asteroids have been visited by spacecraft, and each one offers a new data point in understanding the diversity and history of these primitive bodies. By studying Donaldjohanson, Lucy will help bridge the scientific gap between the inner and outer asteroid populations.

During the flyby, Lucy used its three onboard science instruments — L’LORRI (a long-range imager), L’Ralph (a visible and infrared spectrometer), and L’TES (a thermal emission spectrometer) — to examine Donaldjohanson’s surface geology, composition, and thermal properties. In addition to gathering scientific data, the flyby allowed engineers to practice operating the spacecraft’s pointing, tracking, and data-gathering systems ahead of the more complex Trojan encounters.

The flyby revealed that Donaldjohanson is a contact binary asteroid, characterized by two lobes connected by a narrow neck, resembling a peanut or a barbell. This structure suggests a history of two separate bodies gently colliding and merging. The asteroid measures about 8 kilometers in length and 3.5 kilometers at its widest point, larger than previously estimated.

Donaldjohanson’s surface exhibits a complex geology with varying crater densities between its lobes, indicating a diverse collisional history. These observations provide valuable data on the processes that shaped such bodies and, by extension, the early solar system. The successful flyby serves as a critical rehearsal for Lucy’s upcoming encounters with Trojan asteroids near Jupiter, scheduled between 2027 and 2033.

Looking Ahead

While Donaldjohanson is not the primary target of Lucy’s mission, the asteroid plays an essential role in validating the mission’s capabilities and providing early science returns. Its proximity and well-known orbit make it an ideal testbed. Moreover, the data collected during the flyby will contribute to our broader understanding of asteroid families, space weathering, and solar system evolution.

After the 2025 encounter, Lucy will go on to visit eight Trojan asteroids, including Eurybates, Polymele, Leucus, Orus, and the binary pair Patroclus and Menoetius. These objects are expected to reveal new insights into the formation of the gas giants and the migration of planets during the early stages of solar system development.

In this grand journey, asteroid Donaldjohanson acts as the first stepping stone—a humble but crucial waypoint on the path to uncovering our solar system’s ancient past. As such, it not only honors the legacy of scientific discovery associated with its namesake but also propels forward the exploration of space’s most enduring mysteries.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 24, 2025

Lucy Mission Update

Posted by

 

 

Mea AI adiutor dicit:

NASA’s Lucy mission, launched on October 16, 2021, is the first space mission specifically designed to study the Trojan asteroids, a unique group of asteroids that orbit the Sun in two large swarms around Jupiter—one leading and one trailing the gas giant. These celestial bodies are believed to be remnants from the early solar system, offering valuable clues about the formation of the planets. Named after the fossilized human ancestor “Lucy,” whose discovery shed light on human evolution, this spacecraft similarly seeks to uncover the ancient history of the solar system.

The Lucy mission has four primary scientific goals:

Surface Geology – Analyze surface features to determine the history of cratering, layering, and possible past activity like volcanism.

Surface Composition – Identify the composition of the asteroids’ surfaces to infer the origins of their materials.

Interior and Bulk Properties – Measure mass, density, and structure of each asteroid to understand their internal makeup.

Satellites and Rings – Search for small moons and ring systems, which may help scientists understand how Trojan asteroids have evolved.

By studying these diverse objects, Lucy is expected to provide insights into planetary formation processes and the dynamics of the early solar system.

Lucy’s mission trajectory is one of the most complex ever attempted. It involves multiple gravity assists and a looping journey through the inner solar system to reach different groups of Trojan asteroids. After launching from Cape Canaveral aboard an Atlas V rocket, Lucy began a 12-year journey involving three Earth gravity assists:

First Earth flyby: October 2022

Second Earth flyby: December 2024

Third Earth flyby: December 2030

These assists help shape Lucy’s path to visit eight asteroids in total—a record for a single NASA mission. These include:

Donaldjohanson (Main Belt asteroid, 2025) – Named after the discoverer of the Lucy hominid fossil.

Eurybates and its satellite Queta (leading Trojan swarm, 2027)

Polymele (2027)

Leucus (2028)

Orus (2028)

Patroclus and Menoetius (binary pair in the trailing Trojan swarm, 2033)

The spacecraft’s ability to fly by both leading and trailing Trojan camps is made possible by its unique and precisely calculated orbit, using Earth’s gravity to slingshot itself across vast distances.

To fulfill its objectives, Lucy is equipped with a suite of three main science instruments:

L’LORRI (Lucy LOng Range Reconnaissance Imager): A high-resolution telescopic camera designed to capture detailed images of the surface features of the Trojan asteroids, similar to what New Horizons used for Pluto.

L’Ralph: This instrument includes both a color visible camera and an infrared spectrometer to analyze surface composition and detect ices, organics, and minerals.

L’TES (Lucy Thermal Emission Spectrometer): Measures the heat emitted from asteroid surfaces, helping scientists estimate the texture and composition of the materials.

In addition to these, Lucy uses a high-gain antenna and radio tracking to precisely measure the gravitational tug of the asteroids during flybys—key for calculating mass and internal structure.

The mission timeline is as follows:

Launch: October 16, 2021

Earth Flyby 1: October 2022 (completed successfully)

Main Belt asteroid Donaldjohanson flyby: April 2025

Trojan flybys (Eurybates, Queta, Polymele, Leucus, Orus): 2027–2028

Return to Earth for gravity assist: December 2030

Patroclus and Menoetius (binary system) flyby: March 2033

End of Primary Mission: Late 2033 (though the spacecraft may continue as an extended mission platform depending on health and power)

NASA’s Lucy mission is a bold and pioneering effort to study some of the oldest and most distant relics of our solar system. Through its ambitious trajectory and carefully selected instruments, Lucy will give scientists an unprecedented look into the origins and evolution of our planetary neighborhood. By exploring a diverse array of Trojan asteroids—each with its own unique story—Lucy stands to revolutionize our understanding of how the planets formed and why our solar system looks the way it does today.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 22, 2025

Blue Ghost Mission 1 Concludes

Posted by

 

 

Mea AI adiutor dicit:

​Firefly Aerospace’s Blue Ghost Mission 1, launched on January 15, 2025, and landed on the Moon on March 2, 2025, marked a significant milestone as the first fully successful commercial lunar landing. Operating for over 14 Earth days on the lunar surface, the mission achieved all its objectives, collecting and transmitting approximately 119 gigabytes of data, including high-definition images of lunar phenomena such as sunsets and a total solar eclipse.​

The Blue Ghost lander carried ten NASA-sponsored science and technology payloads designed to advance lunar exploration and prepare for future human missions:​

Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER): Developed by Honeybee Robotics, LISTER utilized pneumatic drilling to measure the Moon’s thermal gradient and conductivity up to depths of 2–3 meters, providing insights into the lunar interior’s heat flow.

Lunar PlanetVac (LPV): Also from Honeybee Robotics, LPV demonstrated a rapid, low-mass method for collecting and sorting lunar regolith using bursts of gas, aiding in sample collection for analysis or potential return to Earth.​

Next Generation Lunar Retroreflector (NGLR): Provided by the University of Maryland, this instrument served as a target for Earth-based lasers to precisely measure the Earth-Moon distance, enhancing our understanding of lunar geophysics and fundamental physics.​

Regolith Adherence Characterization (RAC): Developed by Aegis Aerospace, RAC assessed how lunar dust adheres to various materials over time, informing the design of dust-resistant surfaces for future lunar equipment.​

Radiation Tolerant Computer (RadPC): From Montana State University, RadPC tested a computing system capable of withstanding the Moon’s harsh radiation environment, crucial for long-duration lunar missions.​

Electrodynamic Dust Shield (EDS): Developed by NASA’s Kennedy Space Center, EDS employed electric fields to remove dust from surfaces, demonstrating a self-cleaning technology for lunar habitats and instruments.​

Lunar Environment Heliospheric X-ray Imager (LEXI): A collaboration between Boston University, NASA Goddard Space Flight Center, and Johns Hopkins University, LEXI captured X-ray images of interactions between the solar wind and Earth’s magnetosphere, contributing to space weather research.​

Lunar Magnetotelluric Sounder (LMS): From Southwest Research Institute, LMS measured electric and magnetic fields to study the Moon’s mantle structure and composition, enhancing our knowledge of lunar geology.​

Lunar GNSS Receiver Experiment (LuGRE): A joint effort by the Italian Space Agency and NASA Goddard Space Flight Center, LuGRE tested the reception of GPS and Galileo signals on the Moon, paving the way for lunar navigation systems.​

Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS): Developed by NASA Langley Research Center, SCALPSS recorded high-resolution images of the lander’s descent, analyzing the effects of rocket plumes on the lunar surface to inform future landing strategies.​

Blue Ghost Mission 1’s success not only demonstrated the viability of commercial lunar missions but also provided valuable data to support NASA’s Artemis program and the broader scientific community’s understanding of the Moon.

Video credit: NASA’s Marshall Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Sierra Space dicit:

We have successfully completed our sixth stress test and fourth Ultimate Burst Pressure (UBP) test for our LIFE® 10 commercial space station technology, achieving a rupture at 255 psi, the highest pressure yet. This test exceeded NASA’s Factor of Safety recommendations, demonstrating a safety factor greater than 16x in Low Earth Orbit (LEO) and 23x in lunar environments. Our team continues to lead in the development of expandable structures for various space applications, as we build the world’s first commercial space station.

Video credit: Sierra Space

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
December 27, 2024

Panorama of Mars’ Jezero Crater

Posted by

 

 

NASA dicit:

Travel along a steep slope up to the rim of Mars’ Jezero Crater in this panoramic image captured by NASA’s Perseverance just days before the rover reached the top. The scene shows just how steep some of the slopes leading to the crater rim can be.

The rover used its Mastcam-Z camera system to capture this view on Dec. 5, 2024, the 1,349th Martian day, or sol, of the mission. At the time, the rover was about 1,150 feet (350 meters) from, and 250 feet (75 meters) below, the top of the crater rim – a location the science team calls “Lookout Hill.” The rover reached Lookout Hill on Dec. 10 after a climb of 3½ months and 1,640 vertical feet (500 vertical meters).

Video credit: NASA/JPL-Caltech/ASU/MSSS

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis