OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for June, 2019

June 6, 2019

Cepheus

Posted by

 

 

Wikipedia dicit:

Cepheus is a constellation in the northern sky, named after Cepheus, a king of Aethiopia in Greek mythology. Cepheus was one of the 48 constellations listed by the second century astronomer Ptolemy, and it remains one of the 88 constellations in the modern times.

The constellation’s brightest star is Alpha Cephei, with an apparent magnitude of 2.5. Delta Cephei is the prototype of an important class of star known as a Cepheid variable. RW Cephei, an orange hypergiant, together with the red supergiants Mu Cephei, MY Cephei, VV Cephei, and V354 Cephei are among the largest stars known. In addition, Cepheus also has the hyperluminous quasar S5 0014+81, which hosts an ultramassive black hole in its core, reported at 40 billion solar masses, about 10,000 times more massive than the central black hole of the Milky Way, making this among the most massive black holes currently known.

Video Credit: NASA JPL

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 5, 2019

X59

Posted by

 

 

Wikipedia dicit:

In February 2016, Lockheed Martin was awarded a preliminary design contract, aiming to fly in the 2020 timeframe. A 9% scale model was to be wind tunnel tested from Mach 0.3 to Mach 1.6 between February and April 2017. The Preliminary design review was to be completed by June 2017. While NASA received three inquiries for its August 2017 request for proposals, Lockheed was the sole bidder.

On April 2, 2018, NASA awarded Lockheed Martin a $247.5 million contract to design, build and deliver in late 2021 the Low-Boom X-plane. On June 26, 2018, the US Air Force informed NASA it had assigned the X-59 QueSST designation to the demonstrator. By October, NASA Langley had completed three weeks of wind tunnel testing of an 8%-scale model, with high AOAs up to 50° and 88° at very low speed, up from 13° in previous tunnel campaigns. Testing was for static stability and control, dynamic forced oscillations, and laser flow visualization, expanding on previous experimental and computational predictions.

From November 5, 2018 NASA was to begin tests over two weeks to gather feedback: up to eight thumps a day at different locations will be monitored by 20 noise sensors and described by 400 residents, receiving a $25 per week compensation. To simulate the thump, a F/A-18 is diving from 50,000 ft to briefly go supersonic for reduced shock waves over Galveston, Texas, an island, and a stronger boom over water. By then, Lockheed Martin had began milling the first part in Palmdale, California.

In May 2019, the initial major structural parts should be loaded in the tooling assembly, and the external vision system (XVS) should be flight tested on a King Air around June at NASA Langley. This will be followed by high speed wind tunnel tests to verify inlet performance predictions with a 9.5%-scale model at NASA Glenn Research Center. The critical design review is planned for September 2019 with 80-90% of the drawings released to engineering. The first flight is planned for 2021, with schedule reserve until early 2022.

Video Credit: NASA

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 4, 2019

Proton-M/Yamal-601 Rollout and Launch

Posted by

 



 

 

Wikipedia dicit:

The Proton-M launch vehicle consists of three stages; all of them powered by liquid rocket engines using the hypergolic propellant combination of dinitrogen tetroxide as the oxidizer, and unsymmetrical dimethylhydrazine for fuel.

The first stage is unique in that it consists of a central cylindrical oxidizer tank with the same diameter as the other two stages with six fuel tanks attached to its circumference, each carrying an engine. The engines in this stage can swivel tangentially up to 7° from the neutral position, providing full thrust vector control. The rationale for this design is logistics: the diameter of the oxidizer tanks and the two following stages is the maximum that can be delivered by railroad to Baikonur. However, within Baikonur the fully assembled stack is transported again by rail, as it has enough clearance.

The second stage uses a conventional cylindrical design. It is powered by three RD-0210 engines and one RD-0211 engine. The RD-0211 is a modified version of the RD-0210 used to pressurize the propellant tanks. The second stage is joined to the first stage through a net instead of a closed inter-stage, to allow the exhaust to escape because the second stage begins firing seconds before separation. Thrust vector control is provided by engine gimballing.

The third stage is also of a conventional cylindrical design. It contains the avionics system that controls the first two stages. It uses one RD-0213 which is a fixed (non-gimballed) version of the RD-0210, and one RD-0214 which is a four nozzle vernier engine used for thrust vector control. The nozzles of the RD-0214 can turn up to 45°; they are placed around (with some separation), and moderately above the nozzle of the RD-0213.

The Proton-M features modifications to the lower stages to reduce structural mass, increase thrust, and utilise more propellant (less of it remains unused in the tanks). A closed-loop guidance system is used on the first stage, which allows more complete consumption of propellant. This increases the rocket’s performance slightly compared to previous variants, and reduces the amount of toxic chemicals remaining in the stage when it impacts downrange. It can place up to 21 tonnes (46,000 lb) into low Earth orbit. With an upper stage, it can place a 3 tonne payload into geosynchronous orbit, or a 5.5 tonne payload into geosynchronous transfer orbit. Efforts were also made to reduce dependency on foreign component suppliers.

Video Credit: Roscosmos

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 3, 2019

Proton-M/Yamal-601 Assembly

Posted by

 



 

 

Wikipedia dicit:

Yamal 601 (Russian: Ямал-601) is a geostationary communications satellite ordered by Gazprom Space Systems to ISS Reshetnev on the Ekspress-2000 platform for its Yamal program. The Ekspress-2000 platform is the heavy version, which can weigh up to 3,500 kg (7,700 lb) and generate up to 14 kW of power on an unpressurized bus designed for direct GEO injection with 15 years of design life. Its payload will be supplied by Thales Alenia Space and is composed of 38 C band, and 32 Ka band transponders. It will replace Yamal 202 on 49°E when it reaches its end of service around 2018.

Video Credit: Roscosmos

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis