Copenhagen Suborbitals is the world’s only crewed, crowdfunded space program. In the future, a volunteer astronaut will fly to space on our home-built rocket. We do this on our spare time, all the donations go to paying our workshop rent and buying materials. We are forever thankful to each of our supporters!
On Wednesday, December 9, Starship serial number 8 (SN8) lifted off from our Cameron County launch pad and successfully ascended, transitioned propellant, and performed its landing flip maneuver with precise flap control to reach its landing point. Low pressure in the fuel header tank during the landing burn led to high touchdown velocity resulting in a hard (and exciting!) landing.
The Stratospheric Aerosol and Gas Experiment (SAGE) is a series of remote sensing satellite instruments used to study the chemical composition of Earth’s atmosphere. Specifically, SAGE has been used to study the Earth’s ozone layer and aerosols at the troposphere through the stratosphere. The SAGE instruments use solar occultation measurement technique to determine chemical concentrations in the atmosphere. Solar occultation measurement technique measures sunlight through the atmosphere and ratios that measurement with a sunlight measurement without atmospheric attenuation. This is achieved by observing sunrises and sunsets during a satellite orbit. Physically, the SAGE instruments measure ultraviolet/visible energy and this is converted via algorithms to determine chemical concentrations. SAGE data has been used to study the atmospheres aerosols, ozone, water vapor, and other trace gases.
Rehearsals will be performed before the sampling event, during which the solar arrays will be raised into a Y-shaped configuration to minimize the chance of dust accumulation during contact and provide more ground clearance in case the spacecraft tips over (up to 45°) during contact. The descent will be very slow to minimize thruster firings prior to contact in order to reduce the likelihood of asteroid surface contamination by unreacted hydrazine propellant. Contact with the surface of Bennu will be detected using accelerometers, and the impact force will be dissipated by a spring in the TAGSAM arm.
Upon surface contact by the TAGSAM instrument, a burst of nitrogen gas will be released, which will blow regolith particles smaller than 2 centimetres (0.8 in) into the sampler head at the end of the robotic arm. A five-second timer will limit collection time to mitigate the chance of a collision. After the timer expires, the back-away maneuver will initiate a safe departure from the asteroid.
OSIRIS-REx will then halt the drift away from the asteroid in case it is necessary to return for another sampling attempt. The spacecraft will use images and spinning maneuvers to verify the sample has been acquired as well as determine its mass and verify it is in excess of the required 60 grams (2.1 oz). In the event of a failed sampling attempt, the spacecraft will return for another try. There is enough nitrogen gas for three attempts.
In addition to the bulk sampling mechanism, contact pads on the end of the sampling head will passively collect dust grains smaller than 1 mm, upon contact with the asteroid. These pads are made from tiny loops of stainless steel.
After the sampling attempt, the Sample-Return Capsule (SRC) lid will be opened to allow the sampler head to be stowed. The arm will then be retracted into its launch configuration, and the SRC lid will be closed and latched preparing to return to Earth.
The SpaceX Starship system is a fully-reusable, two-stage-to-orbit, super heavy-lift launch vehicle under development by SpaceX since 2012, as a self-funded private spaceflight project.
The second stage—which is also referred to as “Starship”—is being designed as a long-duration cargo, and eventually, passenger-carrying spacecraft. It is being used initially without any booster stage at all, as part of an extensive development program to prove out launch-and-landing and iterate on a variety of design details, particularly with respect to the vehicle’s atmospheric reentry. While the spacecraft is currently being tested on its own at suborbital altitudes during 2019–20, it will later be used on orbital launches with an additional booster stage, the Super Heavy, where the spacecraft will serve as both the second stage on the two-stage-to-orbit launch vehicle and the in-space long-duration orbital spaceship.
Integrated system testing of a proof of concept for Starship began in March 2019, with the addition of a single Raptor rocket engine to a reduced-height prototype, nicknamed Starhopper – similar to Grasshopper, an equivalent prototype of the Falcon 9 reusable booster. Starhopper was used from April through August 2019 for static testing and low-altitude, low-velocity flight testing of vertical launches and landings in July and August 2019. More prototype Starships have been built and more are under construction as the iterative design goes through several iterations. All test articles have a 9-meter (30 ft)-diameter stainless steel hull.
SpaceX is planning to launch commercial payloads using Starship no earlier than 2021. In April 2020, NASA selected a modified human-rated Starship system as one of three potential lunar landing system design concepts to receive funding for a 10-month long initial design phase for the NASA Artemis program.
Technicians at NASA’s Kennedy Space Center in Florida work to safely return the Artemis I Orion spacecraft to the FAST cell after completing the installation of the spacecraft adapter (SA) cone inside the Neil Armstrong Operations and Checkout Building on Aug. 20, 2020. This is one of the final major hardware operations the spacecraft will undergo during closeout processing prior to being integrated with the Space Launch System (SLS) rocket in preparation for the first Artemis mission.