OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Spacecraft Design category

October 21, 2019

Orion

Posted by

 

 

Wikipedia dicit:

The Orion Multi-Purpose Crew Vehicle (Orion MPCV) is a US-European spacecraft intended to carry a crew of four astronauts to destinations at or beyond low Earth orbit (LEO). As of August 2019, it is under development by NASA and the ESA for launch on the Space Launch System (SLS), Orion is intended to be the main crew vehicle of the Artemis lunar exploration program and other missions not far beyond lunar space. Artemis 1 is planned to be the first flight of Orion on SLS, Artemis 2 the first crewed flight, and Artemis 3 the first lunar landing via the Lunar Gateway.

The Orion MPCV uses the same basic configuration as the Apollo command and service module (CSM) that first took astronauts to the Moon, but with an increased diameter, updated thermal protection system, and a host of other modern technologies. Orion will support long-duration deep space missions with up to 21 days active crew time plus 6 months quiescent spacecraft life. During the quiescent period crew life support would be provided by another module, such as the proposed Deep Space Habitat. The spacecraft’s life support, propulsion, thermal protection, and avionics systems can be upgraded as new technologies become available. The Orion spacecraft includes both crew and service modules, and a spacecraft adapter. The Orion’s crew module is larger than Apollo’s and can support more crew members for short or long-duration missions. The European service module propels and powers the spacecraft as well as storing oxygen and water for astronauts.

Video Credit: Lockheed Martin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 17, 2019

Mission Extension Pods

Posted by

 

 

Northrop Grumman dicit:

SpaceLogistics LLC, a wholly owned subsidiary of Northrop Grumman, provides cooperative in-orbit satellite servicing to geosynchronous satellite operators using its fleet of commercial servicing vehicles. Our initial servicing vehicle, the Mission Extension Vehicle (MEV)™ docks with customers’ existing satellites providing the propulsion and attitude control needed to extend their lives. We have now introduced our next generation system, Mission Extension Pods (MEPs)™, which is a smaller and less expensive life extension service that only performs orbit control. The MEPs are installed by a robotic servicing vehicle called the Mission Robotic Vehicle (MRV)™ which can perform all the functions of an MEV while adding new robotic capabilities for additional services.

Our life extension services are compatible with virtually all geosynchronous satellites with minimal interruption to operations. They enable satellite operators to significantly extend satellite mission life, activate new markets, drive asset value and protect their franchises. SpaceLogistics delivers life extension services that are flexible, scalable, capital-efficient and low-risk. Our breakthrough innovations provide satellite operators unprecedented flexibility in asset deployment, enabling game-changing advances in financial and operating flexibility, and risk mitigation.

Video Credit: Northrop Grumman

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 16, 2019

MEV-1

Posted by

 

 

Northrop Grumman dicit:

Our Mission Extension Vehicle (MEV-1), the first of its kind spacecraft to extend another satellite’s life, is now in orbit. MEV is designed to rendezvous and dock with satellites running low on fuel.

Video Credit: Northrop Grumman

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 3, 2019

WFIRST’s Coronagraph

Posted by

 

 

NASA Goddard dicit:

When a new NASA space telescope opens its eyes in the mid 2020s, it will peer at the universe through some of the most sophisticated sunglasses ever designed. This multi-layered technology, the coronagraph instrument, might more rightly be called “starglasses”: a system of masks, prisms, detectors and even self-flexing mirrors built to block out the glare from distant stars — and reveal the planets in orbit around them. Normally, that glare is overwhelming, blotting out any chance of seeing orbiting planets. The star’s photons — particles of light — swamp those from the planet when they hit the telescope.

WFIRST’s coronagraph just completed a major milestone: a preliminary design review by NASA. The instrument has met all design, schedule and budget requirements, and can now proceed to the next phase, b uilding hardware for flight. The WFIRST mission’s coronagraph is meant to demonstrate the power of increasingly advanced technology. As it captures light directly from large, gaseous exoplanets, and from disks of dust and gas surrounding other stars, it will point the way to the future: single pixel “images” of rocky planets the size of Earth. Then the light can be spread into a rainbow spectrum, revealing which gases are present in the planet’s atmosphere — perhaps oxygen, methane, carbon dioxide, and maybe even signs of life.

The two flexible mirrors inside the coronagraph are key components. As light that has traveled tens of light-years from an exoplanet enters the telescope, thousands of actuators move like pistons, changing the shape of the mirrors in real time. The flexing of these “deformable mirrors” compensates for tiny flaws and changes in the telescope’s optics. Changes on the mirrors’ surfaces are so precise they can compensate for errors smalle r than the width of a strand of DNA. These mirrors, in tandem with high-tech “masks,” another major advance, squelch the star’s diffraction as well – the bending of light waves around the edges of light-blocking elements inside the coronagraph.

The result: blinding starlight is sharply dimmed, and faintly glowing, previously hidden planets appear. The star-dimming technology also could bring the clearest-ever images of distant star systems’ formative years — when they are still swaddled in disks of dust and gas as infant planets take shape inside.

The instrument’s deformable mirrors and other advanced technology — known as “active wavefront control” — should mean a leap of 100 to 1,000 times the capability of previous coronagraphs.

Video Credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 26, 2019

SpaceX Crew Dragon Parachute Test

Posted by

 

 

NASA dicit:

The SpaceX CrewDragon spacecraft parachutes successfully deploy during the latest development test. This test simulated a pad abort, where the vehicle is tumbling at low altitude before parachute deploy, validating SpaceX’s parachute models and margins. As a part of NASA’s Commercial Crew Program, SpaceX has been developing and testing the Crew Dragon parachute system, which is comprised of two drogue parachutes and four main ring-sail parachutes—the same type of parachutes that have been commonly and successfully used for human spaceflight in the past.

Video Credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 25, 2019

Copenhagen Suborbitals RCS Demonstrator

Posted by

 

 

Wikipedia dicit:

A reaction control system (RCS) is a spacecraft system that uses thrusters to provide attitude control, and sometimes translation. Use of diverted engine thrust to provide stable attitude control of a short-or-vertical takeoff and landing aircraft below conventional winged flight speeds, such as with the Harrier “jump jet”, may also be referred to as a reaction control system.

An RCS is capable of providing small amounts of thrust in any desired direction or combination of directions. An RCS is also capable of providing torque to allow control of rotation (roll, pitch, and yaw).

Reaction control systems often use combinations of large and small (vernier) thrusters, to allow different levels of response. Spacecraft reaction control systems are used for: attitude control during re-entry, stationkeeping in orbit, close maneuvering during docking procedures, control of orientation, or ‘pointing the nose’ of the craft, a backup means of deorbiting, ullage motors to prime the fuel system for a main engine burn.

Because spacecraft only contain a finite amount of fuel and there is little chance to refill them, alternative reaction control systems have been developed so that fuel can be conserved. For stationkeeping, some spacecraft (particularly those in geosynchronous orbit) use high-specific impulse engines such as arcjets, ion thrusters, or Hall effect thrusters. To control orientation, a few spacecraft, including the ISS, use momentum wheels which spin to control rotational rates on the vehicle.

Video Credit: Copenhagen Suborbitals

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis