“NASA’s Curiosity rover has found new evidence preserved in rocks on Mars that suggests the planet could have supported ancient life, as well as new evidence in the Martian atmosphere that relates to the search for current life on the Red Planet. While not necessarily evidence of life itself, these findings are a good sign for future missions exploring the planet’s surface and subsurface.
The findings include “tough” organic molecules in three-billion-year-old sedimentary rocks near the surface, as well as seasonal variations in the levels of methane in the atmosphere. Organic molecules contain carbon and hydrogen, and also may include oxygen, nitrogen and other elements. While commonly associated with life, organic molecules also can be created by non-biological processes and are not necessarily indicators of life.
Although the surface of Mars is inhospitable today, there is clear evidence that in the distant past, the Martian climate allowed liquid water – an essential ingredient for life as we know it – to pool at the surface. Data from Curiosity reveal that billions of years ago, a water lake inside Gale Crater held all the ingredients necessary for life, including chemical building blocks and energy sources. “
“The ExoMars rover is a planned robotic Mars rover, part of the international ExoMars programme led by the European Space Agency and the Russian Roscosmos State Corporation.
The rover is an autonomous six-wheeled terrain vehicle once designed to weigh up to 295 kg (650 lb), approximately 60% more than NASA’s 2004 Mars Exploration Rovers Spirit and Opportunity, but about one third that of NASA’s Curiosity rover launched in 2011.
In February 2012, following NASA’s withdrawal, the ESA went back to previous designs for a smaller rover, once calculated to be 207 kg (456 lb). Instrumentation will consist of the exobiology laboratory suite, known as Pasteur analytical laboratory to look for signs of biomolecules or biosignatures from past life. Among other instruments, the rover will also carry a 2-metre (6 ft 7 in) sub-surface drill to pull up samples for its on-board laboratory.
The lead builder of the ExoMars rover, the British division of Airbus Defence and Space, began procuring critical components in March 2014. In December 2014, ESA member states approved the funding for the rover, to be sent on the second launch in 2018, but insufficient funds had already started to threaten a launch delay until 2020. The wheels and suspension system are paid by the Canadian Space Agency and are being manufactured by MDA Corporation in Canada.
By March 2013, the spacecraft was scheduled to launch in 2018 with a Mars landing in early 2019. However, delays in European and Russian industrial activities and deliveries of scientific payloads, forced the launch to be pushed back. In May 2016, ESA announced that the mission had been moved to the next available launch window of July 2020. An ESA ministerial meeting in December 2016 will consider mission issues including €300 million in ExoMars funding and lessons learned from the ExoMars 2016 Schiaparelli mission. One concern is that the Schiaparelli module crashed during its Mars atmospheric entry, and this landing system is being produced in near duplication for the ExoMars lander.”
“This movie, based on images taken by ESA’s Mars Express, showcases the 102 km wide Neukum Crater in the southern hemisphere of Mars. The crater is named for the German physicist and planetary scientist, Gerhard Neukum, one of the founders of ESA’s Mars Express mission who inspired and led the development of the high-resolution stereo camera on Mars Express.
This complex impact crater has a diverse geologic history, as indicated by various features on the crater rim and floor. Particularly striking are the dark dune fields, likely made up of volcanic material blown in and shaped by strong winds. The crater’s shallow interior has been infilled by sediments over its history. It is also marked with two irregular depressions that may be a sign of a weaker material that has since eroded away, leaving behind some islands of more resistant material.
Over time the crater rim has undergone varying degrees of collapse, with landslides and slumped material visible in the crater walls. Many smaller craters have also overprinted the rim and pockmarked the interior since Neukum Crater was formed, highlighting its long history. Neukum Crater is situated in Noachis Terra, one of the oldest known regions on Mars, dating back to at least 3.9 billion years.”
Credits Animation: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO
Credits Music: Coldnoise, CC BY-SA 4.0 and Adrian Neesemann
“The Mars Helicopter, a small, autonomous rotorcraft, will travel with the agency’s Mars 2020 rover mission, currently scheduled to launch in July 2020, to demonstrate the viability and potential of heavier-than-air vehicles on the Red Planet.
Started in August 2013 as a technology development project at NASA’s Jet Propulsion Laboratory, the Mars Helicopter had to prove that big things could come in small packages. The result of the team’s four years of design, testing and redesign weighs in at little under four pounds (1.8 kilograms). Its fuselage is about the size of a softball, and its twin, counter-rotating blades will bite into the thin Martian atmosphere at almost 3,000 rpm — about 10 times the rate of a helicopter on Earth.
The helicopter also contains built-in capabilities needed for operation at Mars, including solar cells to charge its lithium-ion batteries, and a heating mechanism to keep it warm through the cold Martian nights. But before the helicopter can fly at Mars it has to get there. It will do so attached to the belly pan of the Mars 2020 rover.
Once the rover is on the planet’s surface, a suitable location will be found to deploy the helicopter down from the vehicle and place it onto the ground. The rover then will be driven away from the helicopter to a safe distance from which it will relay commands. After its batteries are charged and a myriad of tests are performed, controllers on Earth will command the Mars Helicopter to take its first autonomous flight into history.”
“InSight is a robotic lander designed to study the interior of the planet Mars. The mission launched on 5 May 2018 […] and is expected to land on the surface of Mars (landing site: Elysium Planitia) on 26 November 2018, where it will deploy a seismometer and burrow a heat probe. It will also perform a radio science experiment to study the internal structure of Mars.
The lander was manufactured by Lockheed Martin Space Systems and was originally planned for launch in March 2016. Due to the failure of its SEIS instrument prior to launch, NASA announced in December 2015 that the mission had been postponed, and in March 2016, the launch was rescheduled for 5 May 2018, when it launched successfully. The name is a backronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport.
InSight’s objective is to place a stationary lander equipped with a seismometer and heat transfer probe on the surface of Mars to study the planet’s early geological evolution. This could bring new understanding of the Solar System’s terrestrial planets — Mercury, Venus, Earth, Mars — and the Earth’s Moon. By reusing technology from the Mars Phoenix lander, which successfully landed on Mars in 2008, it is expected that the cost and risk will be reduced.
Following a persistent vacuum failure in the main scientific instrument, the launch window was missed, and the InSight spacecraft was returned to Lockheed Martin’s facility in Denver, Colorado, for storage. NASA officials decided in March 2016 to spend an estimated US$150 million to delay launching InSight to May 2018. This would allow time for the seismometer issue to be fixed, although it increased the cost from the previous US$675 million to a total of $830 million.
InSight will place a single stationary lander on Mars to study its deep interior and address a fundamental issue of planetary and Solar System science: understanding the processes that shaped the rocky planets of the inner Solar System (including Earth) more than four billion years ago.
InSight’s primary objective is to study the earliest evolutionary history of the processes that shaped Mars. By studying the size, thickness, density and overall structure of Mars’ core, mantle and crust, as well as the rate at which heat escapes from the planet’s interior, InSight will provide a glimpse into the evolutionary processes of all of the rocky planets in the inner Solar System. The rocky inner planets share a common ancestry that begins with a process called accretion. As the body increases in size, its interior heats up and evolves to become a terrestrial planet, containing a core, mantle and crust. Despite this common ancestry, each of the terrestrial planets is later shaped and molded through a poorly understood process called differentiation. InSight mission’s goal is to improve the understanding of this process and, by extension, terrestrial evolution, by measuring the planetary building blocks shaped by this differentiation: a terrestrial planet’s core, mantle and crust.
The mission will determine if there is any seismic activity, measure the amount of heat flow from the interior, estimate the size of Mars’ core and whether the core is liquid or solid. This data would be the first of its kind for Mars. It is also expected that frequent meteor airbursts (10–200 detectable events per year for InSight) will provide additional seismo-acoustic signals to probe the interior of Mars. The mission’s secondary objective is to conduct an in-depth study of geophysics, tectonic activity and the effect of meteorite impacts on Mars, which could provide knowledge about such processes on Earth. Measurements of crust thickness, mantle viscosity, core radius and density, and seismic activity should result in an accuracy increase of 3X to 10X compared with current data.
In terms of fundamental processes shaping planetary formation, it is thought that Mars contains the most in-depth and accurate historical record, because it is big enough to have undergone the earliest accretion and internal heating processes that shaped the terrestrial planets, but is small enough to have retained signs of those processes.”
“Spacecraft in orbit and on Mars’s surface have made many exciting discoveries, transforming our understanding of the planet and unveiling clues to the formation of our Solar System, as well as helping us understand our home planet. The next step is to bring samples to Earth for detailed analysis in sophisticated laboratories where results can be verified independently and samples can be reanalysed as laboratory techniques continue to improve.
Bringing Mars to Earth is no simple undertaking—it would require at least three missions from Earth and one never-been-done-before rocket launch from Mars.
A first mission, NASA’s 2020 Mars Rover, is set to collect surface samples in pen-sized canisters as it explores the Red Planet. Up to 31 canisters will be filled and readied for a later pickup – geocaching gone interplanetary.
In the same period, ESA’s ExoMars rover, which is also set to land on Mars in 2021, will be drilling up to two meters below the surface to search for evidence of life.
A second mission with a small fetch rover would land nearby and retrieve the samples in a Martian search-and-rescue operation. This rover would bring the samples back to its lander and place them in a Mars Ascent Vehicle – a small rocket to launch the football-sized container into Mars orbit.
A third launch from Earth would provide a spacecraft sent to orbit Mars and rendezvous with the sample containers. Once the samples are safely collected and loaded into an Earth entry vehicle, the spacecraft would return to Earth, release the vehicle to land in the United States, where the samples will be retrieved and placed in quarantine for detailed analysis by a team of international scientists.”