OSIRIS-REx is a NASA mission to explore near-Earth asteroid Bennu and return a sample to Earth. Prior to arriving at Bennu, mission planners had expected the asteroid’s surface to consist largely of fine-grained material, like a sandy beach. When OSIRIS-REx arrived in December 2018, however, it was greeted by a rocky world covered with boulders.
This unexpected roughness means that there are few places on Bennu where OSIRIS-REx can safely touch down and collect a sample. After a year of studying the asteroid, the mission announced a primary sample collection site, which they designated “Nightingale,” along with a backup site called “Osprey.” In August 2020, OSIRIS-REx will descend to Nightingale and attempt to collect up to four-and-a-half pounds of loose material, for return to Earth in 2023.
The Artemis program is an ongoing crewed spaceflight program carried out predominately by NASA, U.S. commercial spaceflight companies, and international partners such as the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), and the Canadian Space Agency (CSA) with the goal of landing “the first woman and the next man” on the Moon, specifically at the lunar south pole region by 2024. NASA sees Artemis as the next step towards the long-term goal of establishing a sustainable presence on the Moon, laying the foundation for private companies to build a lunar economy, and eventually sending humans to Mars.
Virgil “Gus” Grissom – Commander, Edward White – Command Pilot, Roger Chaffee – Pilot
STS-51 L (January 28, 1986)
Francis R. Scobee – Commander, Michael J. Smith – Pilot, Judith A. Resnik – Mission Specialist 1, Ellison Onizuka – Mission Specialist 2, Ronald E. McNair – Mission Specialist 3, Gregory B. Jarvis – Payload Specialist 1, Sharon Christa McAuliffe – Payload Specialist 2
STS-107 (February 1, 2003)
Rick D. Husband – Commander, William C. McCool – Pilot, Michael P. Anderson – Payload Commander, David M. Brown – Mission Specialist 1, Kalpana Chawla – Mission Specialist 2, Laurel Clark – Mission Specialist 3, Ilan Ramon – Payload Specialist 1
Venturing into the environment of space can have negative effects on the human body. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and changes in the immune system. Additional symptoms include fluid redistribution (causing the “moon-face” appearance typical in pictures of astronauts experiencing weightlessness), loss of body mass, nasal congestion, sleep disturbance, and excess flatulence.
The engineering problems associated with leaving Earth and developing space propulsion systems have been examined for over a century, and millions of hours of research have been spent on them. In recent years there has been an increase in research on the issue of how humans can survive and work in space for extended and possibly indefinite periods of time. This question requires input from the physical and biological sciences and has now become the greatest challenge (other than funding) facing human space exploration. A fundamental step in overcoming this challenge is trying to understand the effects and impact of long-term space travel on the human body.
In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. On 12 April 2019, NASA reported medical results, from the Astronaut Twin Study, where one astronaut twin spent a year in space on the International Space Station, while the other twin spent the year on Earth, which demonstrated several long-lasting changes, including those related to alterations in DNA and cognition, when one twin was compared with the other.
In November 2019, researchers reported that astronauts experienced serious blood flow and clot problems while onboard the International Space Station, based on a six month study of 11 healthy astronauts. The results may influence long-term spaceflight, including a mission to the planet Mars, according to the researchers.
Launching Americans from U.S. soil, sending a new rover to Mars and continuing to prepare for human missions to the Moon are just a few of the things NASA has planned for 2020.
The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid study and sample-return mission. The mission’s main goal is to obtain a sample of at least 60 grams (2.1 oz) from 101955 Bennu, a carbonaceous near-Earth asteroid, and return the sample to Earth for a detailed analysis. The material returned is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth. If successful, OSIRIS-REx will be the first U.S. spacecraft to return samples from an asteroid. The Lidar instrument used aboard the OSIRIS-REx was built by Lockheed Martin, in conjunction with the Canadian Space Agency.
OSIRIS-REx was launched on 8 September 2016, flew past Earth on 22 September 2017, and reached the proximity of Bennu on 3 December 2018, where it began analyzing its surface for a target sample area over the next several months. It is expected to return with its sample to Earth on 24 September 2023.