NASA’s Lucy mission is launching in 2021 and will fly by seven different Trojan asteroids that are orbiting the same distance from the Sun as Jupiter. This video highlights the four main science objectives and the instruments aboard the spacecraft that will be utilized. Lucy will be the first space mission to study the Trojan asteroids, which are remnants of our early solar system.
Video credit: NASA’s Goddard Space Flight Center/Produced & Edited by: David Ladd (USRA)/Animations by: David Ladd (USRA), Walt Feimer (KBRwyle), Jacquelyn DeMink (USRA), Michael Lentz (USRA), Jonathan North (USRA)/Music: “Feels Good” – Wally Gagel & Xandy Barry [ASCAP], provided by Universal Production Music
The International Space Station (ISS) is a modular space station (habitable artificial satellite) in low Earth orbit. It is a multinational collaborative project between five participating space agencies: NASA (United States), Roscosmos (Russia), JAXA (Japan), ESA (Europe), and CSA (Canada). The ownership and use of the space station is established by intergovernmental treaties and agreements. The ISS program evolved from the Space Station Freedom, an American proposal in the 1980s to construct a permanently crewed Earth-orbiting station.
The ISS serves as a microgravity and space environment research laboratory in which scientific experiments are conducted in astrobiology, astronomy, meteorology, physics, and other fields. The station is suited for testing the spacecraft systems and equipment required for possible future long-duration missions to the Moon and Mars. It is the largest artificial object in space and the largest satellite in low Earth orbit, regularly visible to the naked eye from Earth’s surface. It maintains an orbit with an average altitude of 400 kilometres (250 mi) by means of reboost manoeuvres using the engines of the Zvezda Service Module or visiting spacecraft. The ISS circles the Earth in roughly 93 minutes, completing 15.5 orbits per day.
The station is divided into two sections: the Russian Orbital Segment (ROS), operated by Russia; and the United States Orbital Segment (USOS), which is shared by many nations. Roscosmos has endorsed the continued operation of ISS through 2024, but had previously proposed using elements of the Russian segment to construct a new Russian space station called OPSEK. As of December 2018, the station is expected to operate until 2030.
In February 2020, NASA’s Perseverance Rover began its long journey to Mars by first traveling across the United States. The rover was built at NASA’s Jet Propulsion Laboratory in Southern California and then carefully packed and flown to NASA’s Kennedy Space Center in Cape Canaveral, Florida. There, engineers integrated the rover with the spacecraft that carries it to Mars, and the Atlas V rocket chosen to send it on its way.
The Orion Multi-Purpose Crew Vehicle (Orion MPCV) is a class of partially reusable space capsule planned to be used after 2021 in NASA’s human spaceflight programs. The spacecraft consists a Crew Module (CM) manufactured by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of six beyond low Earth orbit, Orion can last 21 days undocked and up to six months docked. It is equipped with solar power, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft’s primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft’s secondary propulsion. Although compatible with other launch vehicles, Orion is primarily designed to launch atop a Space Launch System (SLS) rocket, with a tower launch escape system.
Orion was originally conceived by Lockheed Martin as a proposal for the Crew Exploration Vehicle (CEV) to be used in NASA’s Constellation program. Lockheed Martin’s proposal defeated a competing proposal by Northrop Grumman, and was selected by NASA in 2006 to be the CEV. Originally designed with a service module featuring a new “Orion Main Engine” and a pair of circular solar panels, the spacecraft was to be launched atop the Ares I rocket with either a traditional launch escape system or the experimental Max Launch Abort System equipped. Following the cancellation of the Constellation program in 2010, Orion was heavily redesigned for use in NASA’s Journey to Mars initiative; later named Moon to Mars. The SLS replaced the Ares I as Orion’s primary launch vehicle, and the service module was replaced with a design based on the European Space Agency’s Automated Transfer Vehicle. A development version of Orion’s CM was launched in 2014 during Exploration Flight Test-1, while at least four test articles have been produced. As of 2020, three flight-worthy Orion spacecraft are under construction, with an additional one ordered for use in NASA’s Artemis program; the first of these is due to be launched in 2021 during Artemis 1.
The story of Apollo 13 goes beyond a tale of survival. The mission also successfully completed a science investigation that is still helping to inform our understanding of the Moon to this day. Early in Apollo 13’s voyage, Mission Control sent the spacecraft’s empty S-IVB rocket booster on a collision course with the lunar surface, where a seismometer set up by the Apollo 12 mission would measure the tremors. This video highlights the beginning and end of that impact experiment, and shows how current data and imagery from NASA’s Lunar Reconnaissance Orbiter mission helps us better interpret and analyze the results.
This video not only contains archival footage captured by the crew of Apollo 13, but also newly-uncovered audio of a humorous exchange between astronauts Jim Lovell, Fred Haise, and Capcom Vance Brand at Mission Control. This booster impact experiment audio had been recorded and sent to the National Archives and Records Administration in 1970, but was unplayable at that facility due to differences in audio equipment, so it sat in storage. The only machine capable of playback is located at NASA’s Johnson Space Center, but that equipment had been out of service for decades. In 2015 an effort funded by the National Science Foundation saw the equipment refurbished, and all 7,200 hours of Apollo 13 audio was digitized. This material was first made publicly available in early 2020 at ApolloInRealTime.org. Among this never-before-heard material we were able to find the conversation covered in this video.
This video also utilizes images from the Lunar Reconnaissance Orbiter Camera (LROC) as well as a data visualization of the Moon showing the locations of the booster impact experiment relative to the Apollo 12 seismometer station. The network of seismometers set up during the Apollo era, combined with data from the LRO mission, is teaching us about moonquakes and the interior structure of the Moon. This information will be useful to all future NASA missions to the lunar surface.
Video credit: NASA’s Goddard Space Flight Center/Video Produced & Edited by: David Ladd (USRA)/Data visualizations by: Ernie Wright (USRA)/Music Provided by Universal Production Music: “Trust” – Jose Tomas Novoa Espinosa/Apollo 13 footage and audio provided by: ApolloInRealTime.org
Dragonfly is a NASA mission to explore the chemistry and habitability of Saturn’s largest moon, Titan. The fourth mission in the New Frontiers line, Dragonfly will send an autonomously-operated rotorcraft to visit dozens of sites on Titan, investigating the moon’s surface and shallow subsurface for organic molecules and possible biosignatures. To carry out its mission, Dragonfly is equipped with a neutron spectrometer, a drill system, and a mass spectrometer, allowing scientists to make a detailed survey of Titan’s chemical makeup. Dragonfly is scheduled to launch in 2026 and arrive at Titan in 2034.
Video credit: NASA’s Goddard Space Flight Center/Johns Hopkins APL/Dan Gallagher (USRA): Producer, Narrator, Writer/Jonathan North (USRA): Lead Animator/Melissa Trainer (NASA/GSFC): Lead Writer, Scientist/ Michael Lentz (USRA): Animator/Ann Parsons (NASA/GSFC): Scientist/Elizabeth Turtle (Johns Hopkins University/APL): Scientist/Aaron E. Lepsch (ADNET): Technical Support