OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

12-30-16

ExoMars First Year in Orbit

Posted by

 

 

Wikipedia dixit:

“ExoMars (Exobiology on Mars) is a two-part Martian astrobiology project to search for evidence of life on Mars, a joint mission of the European Space Agency (ESA) and the Russian space agency Roscosmos. The first part, launched in 2016, placed a trace gas research and communication satellite into Mars orbit and released a stationary experimental lander (which crashed). The second part is planned to launch in 2020, and to land a rover on the surface, supporting a science mission that is expected to last into 2022 or beyond.

ExoMars goals are to search for signs of past and present life on Mars, investigate how the Martian water and geochemical environment varies, investigate atmospheric trace gases and their sources and by doing so demonstrate the technologies for a future Mars sample return mission. The mission will search for biosignatures of Martian life, past or present, employing several spacecraft elements to be sent to Mars on two launches.

The ExoMars Trace Gas Orbiter (TGO) and a test stationary lander called Schiaparelli were launched on 14 March 2016. TGO entered Mars orbit on 19 October 2016 and will proceed to map the sources of methane (CH4) and other trace gases present in the Martian atmosphere that could be evidence for possible biological or geological activity. The Schiaparelli experimental lander separated from TGO on 16 October and was maneuvered to land in Meridiani Planum. As of 19 October 2016, ESA had not received a signal that the landing was successful. On 21 October 2016, NASA released a Mars Reconnaissance Orbiter image showing what appears to be the lander crash site. The landing was designed to test new key technologies to safely deliver the 2020 rover mission. The TGO features four instruments and will also act as a communications relay satellite.

In 2020, a Roscosmos-built lander (ExoMars 2020 surface platform) is to deliver the ESA-built ExoMars Rover to the Martian surface. The rover will also include some Roscosmos built instruments. The second mission operations and communications will be led by ALTEC’s Rover Control Centre in Italy.”

Video credit: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
12-30-16

Fly over Mawrth Vallis

Posted by

 

 

Wikipedia dixit:

“Mawrth Vallis (Mawrth means “Mars” in Welsh) is a valley on Mars in the Oxia Palus quadrangle at 22.3°N, 343.5°E with an elevation approximately two kilometers below datum. It is an ancient water outflow channel with light-colored clay-rich rocks. Mawrth Vallis is one of the oldest valleys on Mars. It was formed in and subsequently covered by layered rocks, from beneath which it is now being exhumed.

The Mawrth Vallis region holds special interest because of the presence of phyllosilicate (clay) minerals which form only if water is available, first identified in data from the OMEGA spectrometer on the European Space Agency’s Mars Express orbiter. Mars Reconnaissance Orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars has identified aluminium-rich and iron-rich clays, each with a unique distribution. Some of the clays recently discovered by the Mars Reconnaissance Orbiter are montmorillonite and kaolinite, and nontronite. Since some clays seem to drape over high and low areas, it is possible that volcanic ash landed in an open body of water. On Earth such clays occur in (among other environments) weathered volcanic rocks and hydrothermal systems, where volcanic activity and water interact. Mawrth Vallis was at one point considered as a landing site for the Mars Science Laboratory, which ultimately landed at Gale Crater. Clay minerals easily preserve microscopic life on Earth, so perhaps traces of ancient life may be found at Mawrth. It is considered a potential landing site for the Mars 2020 rover.”

Video credit: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
10-2-16

Rosetta’s Final Path

Posted by

 



 

 

Wikipedia dixit:

“Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft flew by Mars and the asteroids 21 Lutetia and 2867 Å teins.

On 6 August 2014, the spacecraft reached the comet and performed a series of manoeuvres to be captured in its orbit. On 12 November, the lander module performed the first successful landing on a comet, though its battery power ran out two days later. Communications with Philae were briefly restored in June and July 2015, but due to diminishing solar power, Rosetta’s communications module with the lander was turned off on 27 July 2016. On 30 September 2016, the Rosetta spacecraft ended its mission by landing on the comet in its Ma’at region.

The probe is named after the Rosetta Stone, a stele of Egyptian origin featuring a decree in three scripts. The lander is named after the Philae obelisk, which bears a bilingual Greek and Egyptian hieroglyphic inscription. A comparison of its hieroglyphs with those on the Rosetta Stone catalysed the deciphering of the Egyptian writing system. Similarly, it is hoped that these spacecraft will result in better understanding of comets and the early Solar System. In a more direct analogy to its namesake, the Rosetta spacecraft also carries a micro-etched nickel alloy Rosetta disc donated by the Long Now Foundation inscribed with 13,000 pages of text in 1,200 languages.”

Video credit: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 



 

 

NASA dixit:

“After saying farewell to NASA’s Jeff Williams and the rest of the crew onboard the International Space Station on June 18. Expedition 47 Commander Tim Kopra of NASA, Soyuz Commander Yuri Malenchenko of Roscosmos and Flight Engineer Tim Peake of ESA (European Space Agency) undocked from the ISS for the return trip to Earth. Kopra, Malenchenko and Peake spent 186 days in space aboard the orbital laboratory.

[They] landed safely near the town of Dzhezkazgan, Kazakhstan June 18, hours after leaving the International Space Station in their Soyuz TMA-19M spacecraft.”

Video credit: NASA/Roscosmos

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

NASA dixit:

“This artist’s rendering illustrates new findings about a star shredded by a black hole. When a star wanders too close to a black hole, intense tidal forces rip the star apart. In these events, called “tidal disruptions,” some of the stellar debris is flung outward at high speed while the rest falls toward the black hole. This causes a distinct X-ray flare that can last for a few years. NASA’s Chandra X-ray Observatory, Swift Gamma-ray Burst Explorer, and ESA/NASA’s XMM-Newton collected different pieces of this astronomical puzzle in a tidal disruption event called ASASSN-14li, which was found in an optical search by the All-Sky Automated Survey for Supernovae (ASAS-SN) in November 2014. The event occurred near a super-massive black hole estimated to weigh a few million times the mass of the sun in the center of PGC 043234, a galaxy that lies about 290 million light-years away. Astronomers hope to find more events like ASASSN-14li to test theoretical models about how black holes affect their environments.

During the tidal disruption event, filaments containing much of the star’s mass fall toward the black hole. Eventually these gaseous filaments merge into a smooth, hot disk glowing brightly in X-rays. As the disk forms, its central region heats up tremendously, which drives a flow of material, called a wind, away from the disk.”

Video credit: NASA’s Goddard Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 



 


 

 

Wikipedia dixit:

“ExoMars (Exobiology on Mars) Programme is an astrobiology project to investigate the past habitability environment of Mars and to demonstrate new technologies paving the way for a future Mars sample return mission in the 2020s.

The programme is led by the European Space Agency (ESA) in collaboration with the Russian Federal Space Agency (Roscosmos). The programme will search for biosignatures of Martian life, past or present, employing several spacecraft elements to be sent to Mars on two launches. The ExoMars Trace Gas Orbiter (TGO) and a test stationary lander called Schiaparelli were launched on 14 March 2016. The TGO will deliver Schiaparelli lander in 19 October 2016, and then proceed to map the sources of methane on Mars and other gases. The TGO features four instruments and will also act as a communications relay satellite.

The Trace Gas Orbiter (TGO) is a Mars telecommunications orbiter and atmospheric gas analyzer mission that was launched on 14 March 2016. The spacecraft will arrive in the Martian orbit in October 2016. It will deliver the ExoMars Schiaparelli EDM lander and then proceed to map the sources of methane on Mars and other gases, and in doing so, help select the landing site for the ExoMars rover to be launched in 2018. The presence of methane in Mars’ atmosphere is intriguing because its likely origin is either present-day life or geological activity. Upon the arrival of the rover in 2021, the orbiter would be transferred into a lower orbit where it would be able to perform analytical science activities as well as provide the Schiaparelli EDM lander and ExoMars rover with telecommunication relay. NASA provided an Electra telecommunications relay and navigation instrument to ensure communications between probes and rovers on the surface of Mars and controllers on Earth. The TGO would continue serving as a telecommunication relay satellite for future landed missions until 2022.

The Entry, Descent and Landing Demonstrator Module (EDM) called Schiaparelli, is intended to provide the European Space Agency (ESA) and Russia’s Roscosmos with the technology for landing on the surface of Mars. It was launched together with the ExoMars Trace Gas Orbiter (TGO) on 14 March 2016 and will land on 19 October 2016. The lander is equipped with a non-rechargeable electric battery with enough power for four sols. The landing will take place on Meridiani Planum during the dust storm season, which will provide a unique chance to characterize a dust-loaded atmosphere during entry and descent, and to conduct surface measurements associated with a dust-rich environment.

Once on the surface, it will measure the wind speed and direction, humidity, pressure and surface temperature, and determine the transparency of the atmosphere. It carries a surface payload, based on the proposed meteorological DREAMS (Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface) package, consists of a suite of sensors to measure the wind speed and direction (MetWind), humidity (MetHumi), pressure (MetBaro), surface temperature (MarsTem), the transparency of the atmosphere (Optical Depth Sensor; ODS), and atmospheric electrification (Atmospheric Radiation and Electricity Sensor; MicroARES). The DREAMS payload will function for 2 or 3 days as an environmental station for the duration of the EDM surface mission after landing”

Video credit: ESA/Roscosmos

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis