MIT is developing an ion propulsion system that uses nitrogen as propellant. The new system is called Mini-Helicon Plasma Thruster.
Research and development of the Mini-Helicon is taking place at MIT’s Space Propulsion Laboratory (SPL).
“The Mini-Helicon is one exciting example of the sorts of thrusters one can devise using external electrical energy instead of the locked-in chemical energy. Others we in the SPL work on include Hall thrusters and Electrospray thrusters. This area tends to attract students with a strong physics background, because it sits at the intersection of physics and engineering, with ample room for invention,” said Manuel Martinez-Sanchez, director of the SPL and a professor in the Department of Aeronautics and Astronautics.
The Mini-Helicon has a simple design: a quartz tube wrapped by a coiled antenna, surrounded by magnets. The gas used as propellant is pumped into the quartz tube, where it is turned into plasma. The magnets confine, guide, and accelerate the plasma into an exhaust beam, which creates the thrust.
The Mini-Helicon design has its roots in a larger and more powerful propulsion system developed in collaboration with former NASA astronaut Franklin Chang-Diaz. A team led by Oleg Batishchev, principal research scientist in the Department of Aeronautics and Astronautics, did a theoretical analysis showing that components of the larger system could be used for different applications. The idea “was that a rocket based on the first stage [of Chang-Diaz’s system] could be small and simple, for more economical applications,” said Batishchev, who noted that the team’s prototype would fit in a large shoe box.
Batishchev notes that it could be years before the technology can be used commercially, in part due to certification policies through NASA and other agencies.
For more information about MIT’s Mini-Helicon, check out the MIT News Office website.
There are no comments.
Add A Comment