OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the The Best Of category

September 14, 2009

PROBA-2

Posted by

 

Credits: ESA – P. Carril, 2009

 

PROBA-2 is part of an ESA program called In-Orbit Technology Demonstration Program, which is dedicated to the demonstration of innovative technologies.

 

The PROBA-2 payload consists of scientific instruments that will make observations of the Sun in the ultraviolet portion of the spectrum and will measure certain properties of the plasma surrounding the spacecraft.

 

 

Among the new equipment and technologies demonstrated by PROBA-2 are new models of star trackers, GPS receivers, and reaction wheels, a new type of lithium-ion battery, an advanced data and power management system, composite carbon-fibre and aluminum structural panels, and magnetometers. PROBA-2 also hosts a digital Sun-sensor, an experimental solar panel, and a xenon gas propulsion system.

 

PROBA-2 will be launched onboard the same launch vehicle as SMOS. While the SMOS Mission will provide global maps of moisture over the Earth’s landmasses and salinity over the oceans, PROBA-2 is a small technology demonstrator. Launched as a secondary payload, PROBA-2 will orbit in the same plane as SMOS, but at a lower altitude. The planned mission duration is two years.

 

The spacecraft is a 600 mm x 700 mm x 850 mm box-shaped structure, with a mass of 130 kg. Aluminum honeycomb panels make the primary mechanical structure of the spacecraft. The two deployable solar panels and the one outer solar panel provide a maximum of 110 Watts of electrical power. A lithium-ion battery provides power during eclipse periods. A single 20 mN thruster is used for orbit adjustments.

 

Credits: ESA – P. Carril, 2009

 

PROBA-2 is three-axis stabilized. Attitude changes are performed using four reaction wheels that can be unloaded by magnetorquers, while the attitude determination is provided by star trackers, GPS sensors, and a three-axis magnetometer.

 

The spacecraft was built by Verhaert Design & Development NV, Belgium.

 

 

The scientific payload comprises of four experiments: two for solar observations (LYRA and SWAP) and two for space weather measurements (DSLP and TPMU).

 

LYRA is a Lyman-Alpha radiometer that will monitor four bands in a very wide ultraviolet spectrum. SWAP (the Sun Watcher using Active Pixel-sensor) will make measurements of the Sun’s corona. DSLP (Dual Segmented Langmuir Probes) will make measurements of the electron density and temperature in the background plasma. TPMU, which is the Thermal Plasma Measurement Unit, will measure ion densities and composition.

 

Launch services for the PROBA-2 mission are provided by EUROCKOT Launch Services GmbH. PROBA-2 will achieve its lower orbit by an orbit change maneuver of the Breeze-KM upper stage of the Rockot launch vehicle.

 

Credits: ESA – P. Carril, 2009

 

Rockot is a three-stage liquid propellant launch vehicle based on the Russian SS-19 Intercontinental Ballistic Missile (ICMB).

 

Rockot’s first and second stages (provided by SS-19) are completed by a third re-ignitable stage, the Breeze-KM upper stage. Rockot can deliver 1950 kg payloads to Low Earth Orbits (LEOs).

 

 

The length of the launch vehicle is 29 m. The external diameter of the stages is 2.5 m, while the payload fairing has an external diameter of 2.6 m and a height of 6.7 m. The mass of the vehicle at launch is 107 metric tons.

 

PROBA-2 will be carried into orbit from Plesetsk Cosmodrome, Russia. The operational orbit is a 700 km sun-synchronous orbit, with a 98 degree inclination.

 

You can read more about PROBA-2 on ESA’s dedicated web site. ESA’s web site also provides information about PROBA-1, which is already flying, and future PROBA missions, like PROBA-3 and PROBA-V.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

Credits: NASA

 

Software is a key component of present-day aerospace systems. Increased reliability is required from operating systems that host critical software applications.

 

Wind River’s VxWorks is a real-time operating system that is widely used in the aerospace industry. Missions using VxWorks include the Mars Reconnaissance Orbiter, the Phoenix Mars Lander, the Deep Impact space probe, Spirit and Opportunity Mars Exploration Rovers, and Stardust.

 

Mike Deliman, Senior Engineering Specialist at Wind River Systems, answered a few questions related to the new VxWorks MILS Platform 2.0.

 

DJ: What is VxWorks MILS Platform 2.0?
Mike Deliman: VxWorks MILS Platform 2.0 is a platform for creating systems that are evaluatable to high levels of the Common Criteria / Evaluated Assurance Level scale. VxWorks MILS 2.0 separation kernel is currently under evaluation by NIAP labs to an EAL 6+ level. The VxWorks MILS 2.0 Platform contains a separation kernel and technology to allow you to create multi-partitioned software systems where each partition can be evaluated to handle multiple independent levels of security (MILS) or to handle multiple levels of security (MLS). The long-and-short of it is similar to a VxWorks 653 flight OS, you can use a VxWorks MILS 2 platform to design a single platform that is capable of replacing multiple legacy systems. In other words, like a VxWorks 653 flight system, you can create a single modern system to replace multiple legacy systems, reducing Space, Weight and Power (SWaP) requirements.

 

DJ: What is a separation kernel and how did the concept make its way into software development for the aerospace industry?
M.D.: Separation Kernels allow you to take a single modern high-powered CPU and use it to replace several legacy systems. There are many examples of separation kernels and paradigms for their use. ARINC 653 defines a time and memory-space partitioning paradigm, services, and an API that must be provided (the Application Executive, or APEX). We have a platform – VxWorks 653 – that implements the ARINC 653 APEX separation and API. Separation Technologies are becoming quite popular, many are called “Hypervisors”. There are many Hypervisors out in cyberspace, the “Type 1” Hypervisors can all be thought of as forms of separation kernels. The Aerospace industry is a prime target for separation technologies because of the need to reduce the “SWaP” factors.

 

DJ: How does the VxWorks MILS separation kernel improve the reliability of aerospace applications?
M.D.: The VxWorks MILS separation kernel could be used to allow a single satellite to fulfill multiple missions. For instance, there may be a number of sensors and experiments on board, some for civilian / educational interests, some for NASA, some for research entities, perhaps some for the USAF. A MILS kernel could be used to collect, encode, and steer data safely, providing assurance that the data will not be mixed until it is in a state deemed “safe” for mixing. A satellite running a MILS separation kernel to handle such data wrangling could combine and satisfy multiple mission masters. If I were to be asked to design such a system, I would most likely recommend a flight computer separate from the science computer. Even if the science and flight SW were to share a single CPU, the separation technology would help ensure that no problems on any science application could affect any of the other science applications or any flight applications. In this way the flight system would be protected from anomalous events in the science packages, and the overall system would benefit from improved reliability.

 

DJ: John Rushby introduced the concept of separation kernel in order to provide multilevel secure operation on general-purpose multi-user systems. Do software applications developed for the aerospace industry (and I have in mind software running on micro-controllers) have the level of complexity that would require a separation kernel?
M.D.: Concentrating on the micro-controller aspect, no, most single (federated) systems running one micro-controller (or even several) do not even need a 32-bit processor dedicated to their operation. However, with a proper separation kernel and time-sliced architecture, you could use one modern high-speed 32-bit CPU to control and monitor a large number of smaller systems, and ensure any faults occurring on those control-and-monitor loops are contained. And as noted above, in a system used to satisfy requirements of multiple masters (agencies), MILS-style data separation may be the only way to keep satellite weight within limits and provide the information assurance the agencies require.

 

DJ: What features make the VxWorks operating system reliable and secure?
M.D.: Focusing on the VxWorks family of operating systems and the VxWorks OS API, VxWorks has been used in millions of devices over more than two decades of service, in applications as simple as MP3 players and as complex as autonomous space exploring robots, and as life-critical as telerobotic surgeons. There is no way a software company could anticipate the wide range of use that our customers have dreamed up and implemented. The VxWorks family of OSes share a common ancestry of code and all can benefit from bugs discovered and fixed in any of the family line.
 
Focusing on the VxWorks MILS platform, the separation kernel was designed expressly in compliance with the SKPP (the Protection Profile for separation kernels), with a focus on controlling embedded applications that require some degree of real-time control.

 

DJ: What are the features that make VxWorks a real-time operating system?
M.D.: Determinism is king in the real-time world. The ability to react to events in the real world with a high degree of determinism is what gives VxWorks its hard real-time responsiveness. This hard-determinism is carried over into all of the VxWorks family line, including our separation kernels and VxWorks SMP.

 

DJ: What toolchain is shipped with VxWorks? What programming languages are supported by the toolchain?
M.D.: Depending on the VxWorks package, one or more toolchains may be supplied and supported. For the most part, various versions of the Wind River Complier (formerly “Diab”), and various versions of the Gnu tools are supplied / supported with VxWorks. For the VxWorks MILS 2 platform we use a couple of versions of the GNU tool chains, specially modified for the parts they are used to build.

 

DJ: What hardware is targeted by the platform? Is an actual board necessary for development of applications or is an emulated target environment available for software engineers?
M.D.: Specifically, chips we are targeting include the following:
– Freescale 8641D (CW VPX6-165)
– Freescale 8548 (Wind River SBC8548)
– Intel Core 2 Duo (Supermicro C2SBC-Q)
– Freescale P2020, P1011, P4080 (future)
– Intel Atom, Nehalem (future)
We currently support Simics as the only simulation environment available for the VxWorks MILS platform.

 

Wind River Systems was founded in Berkeley, California in 1981. Intel bought Wind River Systems for a reported $884 million in July 2009. VxWorks real-time operating system is one of the Wind River flagship products.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 13, 2009

GRAIL Or The Quest For The Moon Continues

Posted by

 

Credits: NASA

 

 

The Gravity Recovery And Interior Laboratory (GRAIL) is a mission that will measure the lunar gravity field in unprecedented detail. The twin spacecraft will orbit the Moon in tandem and collect scientific data for several months.

 

 

The GRAIL mission will cost $375 million and launch in 2011 as part of NASA’s Discovery Program. The window for the launch is 26 days long and opens on September 8, 2011.

 

After a dual launch aboard a Delta II 2920-10, the spacecraft will spend three to four months cruising on a low-energy trans-lunar trajectory. The two spacecraft will orbit the moon on 50 km, near-circular polar orbits, with a spacecraft separation of 175 – 225 km. The science phase of the mission will take 90 days, and it will be followed by a 12-month science data analysis.

 

The technique used by GRAIL for collecting scientific data was also used for the Gravity Recovery And Climate Experiment (GRACE) mission, launched in 2002. Small changes in the distance that separates the two spacecraft are translated in variations of the lunar gravity field.

 

The GRAIL spacecraft are based on the Lockheed Martin XSS-11 bus. The XSS-11 (Experimental Small Satellite 11) is the result of research done at Lockheed Martin Space Systems in the field of agile and affordable micro-satellites. Interesting to mention here is that there were speculations that XSS-11 could also be used as the base for the development of a kinetic anti-satellite weapon (ASAT).

 

The spacecraft is a rectangular composite structure. Two non-articulated solar arrays and lithium ion battery provides power. The attitude control system, the power management system, and the telecommunications system are also inherited from the XSS-11 bus.

 

The payload consists of a Ka-band Lunar Gravity Ranging System (LGRS), which is derived from the instrument carried by the GRACE spacecraft.

 

The spacecraft flight operations will be conducted from Lockheed Martin’s Denver facility. Science Level 0 and 1 data processing will be done at Jet Propulsion Laboratory (JPL), Level 2 data processing at JPL, the Goddard Space Flight Center (GSFC) and the Massachusetts Institute of Technology (MIT). The final scientific data will be delivered by MIT.

 

While missions like the Lunar Reconnaissance Orbiter (LRO) will find safe landing sites, locate potential resources, and take measurements of the radiation environment of the lunar surface, GRAIL will explore the moon from crust to core, and determine the moon’s internal structure and evolution.

 

More information about GRAIL is available on the GRAIL mission page on MIT’s web site.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

Credits: NASA/JPL

 

Wide-field Infrared Survey Explorer or WISE is a NASA-funded scientific research project that will provide an all-sky survey in the mid-infrared wavelength range.

 

WISE will collect data that will allow scientists to compile an all-sky infrared image atlas and catalogue of over 300 million infrared sources. WISE will be able to measure the diameters of more than 100,000 asteroids that glow in the mid-infrared, and make observations of the coldest and nearest stars, regions of new star and planet formation, and the structure of our own galaxy.

 

 

WISE will only operate for seven to thirteen months. WISE will explore the entire Universe from a 523×523 km, 97.4-inclined orbit above the ground. The spacecraft will orbit in a Sun-synchronous orbit, so the solar panel will always be pointed at the Sun.

 

The cryostat will run for thirteen months. After a one-month in-orbit checkout period, the telescope will operate for six months. An additional pass of the sky (that would take another six months) is possible, if funded to do so by NASA.

 

Credits: UCLA/JPL

 

The spacecraft is 2.85 m long, 2.0 m wide, and 1.73 m deep. The spacecraft does not carry propellant. The telescope will make all pointing adjustments using reaction wheels and torque rods. Star trackers, sun sensors, a magnetometer, and gyroscopes will be the sensors used by the attitude control subsystem. The TDRSS (Tracking and Data Relay Satellite System) satellites will relay commands and data with ground stations.

 

 

The field of view is 47 arc minutes and it comes from a small telescope diameter (only 40 cm) and large detector arrays. The telescope has four infrared sensitive detector arrays, 1024×1024 pixels each. For the near-infrared bands, there are Mercury-Cadmium-Telluride (MCT) detectors, while for the mid-infrared bands, Arsenic-doped Silicon (Si:As) detectors are used.

 

Credits: UCLA/JPL

 

The optics instruments have to be cooled to very low temperatures in order to lower noise detection. The MCT detectors operate at 32 K, while the Si:As detectors will be cooled to less than 8 K.

 

The WISE launch is scheduled for November 2009. WISE will launch aboard a Delta II launch vehicle from Vandenberg Air Force Base, in California.

 

 

The WISE team consists of UCLA (University of California at Los Angeles), JPL (Jet Propulsion Laboratory), SDL (Space Dynamics Labs in Utah), BATC (Ball Aerospace & Technology Corporation), IPAC (Infrared Processing and Analysis Center), and UCB (University of California at Berkeley).

 

For more information about the WISE mission, you can visit the WISE mission homepage at the Space Science Laboratory, University of California, Berkeley, website.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 16, 2009

Q&A With Ed Belbruno

Posted by

 

Credits: NASA

 

NASA’s GRAIL mission will be one of the few missions to utilize the chaos associated with the subtle gravitational forces between planets in order to reach lunar orbit. The mission is scheduled to launch in 2011 and will use a low-fuel trajectory to the Moon.

 

 

Ed Belbruno, the first to use weak stability boundary theory to design trajectories for space missions, has agreed to answer some questions for OrbitalHub readers.

 

DJ: You graduated in mathematics from New York University, and received your PhD in mathematics from New York University’s Courant Institute. As a mathematician, how did you develop an interest in celestial mechanics?
Ed Belbruno: I was always interested in space since I was very young, going back to 4 years old. When I went to undergraduate school, also at NYU, I was a joint chemistry and mathematics major. At that time I was also interested in astrochemistry. When I got my BS, I went on to the Courant Institute and immediately wanted to get involved in an area of mathematics involved with space. I asked around, and found that there was a very famous mathematician there who was considered to be one of the leaders in the world in the subject, Juergen Moser. I learned that he was also a leader in a field called theoretical celestial mechanics. So, I asked to work with him and he agreed. For me it was great because I loved mathematics and I loved space. I am also an artist, and my early paintings involved a lot of space scenes. My being drawn to celestial mechanics was a natural thing.

 

DJ: I think of celestial mechanics as a precise discipline… the word CHAOS from the titles of the presentations you are giving would make any aerospace engineer nervous. Is this a misnomer or it is really the foundation for the new class of trajectories you designed?
E.B.: When I arrived at JPL in 1986, I was previously an assistant professor of mathematics at Boston University. I arrived at JPL and found myself at a leading space center – to work on the following missions: Galileo, Cassini, Magellan, Ulysses. My job was to do trajectory design. I noticed that all these missions and all the others I saw in the past, relied mainly on Hohmann transfers which are straightforward trajectories found using algebra. They are very well behaved and linear in nature. There was nothing chaotic about them. I noticed that in the field of astrodynamics, which designs trajectories for spacecraft, that advanced mathematical techniques using a general subject called dynamical systems theory, which includes chaos theory, was never used. I figured if you could incorporate that into astrodynamics, new exciting low fuel trajectories could be found. No one at JPL really believed me, but in 1986 I started investigating whether or not one could use the subtle gravitational interactions between the Earth and Moon to get a spacecraft into orbit about the Moon without the use of rocket engines – that is, automatically. This had never been done before. I also found that chaos methods had to be employed to do this since the gravitational interactions between the Earth and Moon give rise to chaotic motions for a spacecraft. I succeeded in 1986 and found a way to do this for a mission study at JPL called LGAS – Lunar Get Away Special, where I found a 2-year route to the Moon with automatic capture at the Moon that was chaotic. This was the first time chaos was used for a lunar capture for a spacecraft – or capture at any planet. It was the first systematic use of chaos in astrodynamics as far as I know. The LGAS design was eventually used by the European Space Agency for their SMART-1 lunar mission in 2004. In 1991 I found a 3-4 month route to the Moon using automatic chaotic capture for Japan’s Hiten mission. This transfer first moves out to 1.5 million kilometers from the Earth, then falls back to the Earth-Moon system and into automatic ballistic capture about the Moon. This same transfer type is going to be used for NASA’s GRAIL mission in 2011. All these trajectories that go to automatic capture at the Moon are chaotic since they are very sensitive to small changes.

 

DJ: Was there any resistance from the scientific community when you first published the results of your research?
E.B.: Yes. When I first started designing routes to the Moon that employed automatic capture (or ‘ballistic capture”) back in 1986-1990 at JPL, that employed chaos as described above there was a good deal resistance, in spite of publishing papers and demonstrating actual trajectories via computer simulations. This is because no one had ever heard of this before, and also, chaos was a not a term that was desired to be associated with space travel. In 1990 I had a disagreement at JPL over this and found myself looking for another job. Luckily, soon, a couple of months after that while still at JPL, ready to leave for another job, I was able to take part in the rescue of a Japanese lunar mission, and get its spacecraft, Hiten, successfully to the Moon on one of these new transfers employing ballistic capture, that vindicated my work – and saved my career.

 

DJ: Are there any computational challenges that make the class of trajectories you designed difficult to compute? Is the lack of computational power the reason they are a recent development in celestial mechanics?
E.B.: Yes, they require more accuracy than is typically used since the motions involved are very sensitive in nature. So, different methods, other than classical optimization methods, have to be employed. These methods involve using ideas from chaos theory and dynamical systems and making use of regions that support chaotic motions called weak stability boundaries. Once the motions in these regions were better understood, then the methods have been refined and the trajectories can be more easily generated. More powerful computers were/are not necessary. What was necessary were new numerical methods.

 

DJ: I believe solar sails would match the profile of low-energy space missions. Have you ever considered applying the weak stability boundary theory in order to design trajectories for spacecraft propelled by solar sails?
E.B.: I agree that solar sails would be a great thing to use with these low energy trajectories. I have considered them and made some designs actually, but never designed any missions using them.

 

DJ: Considering your experience in designing low-cost trajectories for lunar missions, have you been contacted by any Google X-Prize team for assistance? How feasible would it be for a Google X-Prize team to use such a trajectory (costs aside, they would have to launch at least three months before any other team in order to make an attempt to win the prize)?
E.B.: Yes, I was on the so-called ‘Mystery team’ for the Google X-prize from latter 2007 to latter 08. The base design was to use one of these low energy transfers to the Moon of the type that Hiten used, described earlier, and that GRAIL is planning to use. I don’t know how feasible it would be to use this trajectory – certainly no more or less feasible than using a direct Hohmann transfer. It ultimately depends on the launch vehicle, which are very expensive. I don’t think the three months flight time is a factor since it is very unlikely that there will be that kind of time pressure considering how difficult it is to send something to the Moon for a private company.

 

DJ: What other space missions are you currently involved in? Can you provide a brief description?
E.B.: I am involved, indirectly, with NASA’s STEREO solar science mission in the sense that they have recently redirected that mission to do an excursion to L4, L5 of the Earth-Sun to try and verify a theory of Richard Gott and myself on the origin of the Moon. This theory was published by Gott and myself in 2005 (see http://www.edbelbruno.com) in the Astronomical Journal entitled, Where Did the Moon Come From? In that paper we hypothesized that the giant Mars-sized impactor that is thought to have hit the Earth to form the Moon, billions of years ago (that Hayden has a fabulous show on), actually originated at special locations in space. These locations are called Earth-Sun equilateral L4, L5 points, 93 million miles from the Earth in either direction, on the Earth’s orbit. The impactor is called Theia. It is felt that if our theory is correct that residual material and perhaps asteroids exist near L4, L5. To verify this, the STEREO mission, consisting of two spacecraft, are being redirected to go to these points to investigate the possible remains of the mysterious planet called Theia that may have been there long ago. The NASA press release explains this in detail. The spacecraft are due to arrive at L4, L5 in September, October this year and are currently approaching these locations.

 

DJ: It is not often you meet someone who is both an artist and a mathematician. How do these roles complement each other?
E.B.: When I do paintings, I find that I have to completely turn off any logical mathematical way of thinking and work on a subconscious level. This is exactly the opposite of working mathematically where you have to be very logical and work mostly with the conscious part of your mind. These two processes are totally different. There is a little subconscious thought when doing mathematical/scientific work, of course, but you have to pay close attention to deductive reasoning. In doing a painting, especially abstract expressionist painting, you have to avoid as much as possible deductive reasoning and be very spontaneous without thinking, which would ruin the painting. I have found it challenging to work in these two different ways – but now I can do it fairly easily.

 

Credits: Linda Gambone

 

 

If you happen to be in New York on July 20, 2009, you can attend the presentation A New Path To The Moon and Beyond Using Gravitational Chaos, at the Hayden Planetarium Space Theater, American Museum of Natural History.

 

Ed Belbruno will present the weak stability boundary theory and the alternative approach to space travel he developed in the 1980s.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 19, 2009

SMOS

Posted by

 

Credits: ESA-AOES Medialab

 

The Soil Moisture and Ocean Salinity (SMOS) mission, which is the second Earth Explorer Opportunity mission to be developed as part of ESA’s Living Planet Program, will provide global maps of moisture over the Earth’s landmasses and salinity over the oceans. These observations will improve our understanding of hydrology and ocean circulation patterns.

 

 

The science objectives for the SMOS mission are global monitoring of surface soil moisture and surface salinity over oceans, and improving the characterization of ice and snow-covered surfaces.

 

The SMOS satellite is built around a standard spacecraft bus called Proteus, which was developed by the French space agency CNES (Centre National d’Etudes Spatiales) and Alcatel Alenia Space. Proteus measures one cubic meter and plays the role of a service module, hosting all the subsystems that are required for the satellite to function.

 

A GPS receiver collects satellite position information. A hydrazine monopropellant system consisting of four 1-Newton thrusters, which are mounted on the base of the spacecraft, provides the thrust for orbit control. Three 2-axis gyroscopes and four small reaction wheels control the attitude of the satellite. A star tracker also provides accurate attitude information for instrument measurements.

 

The solar panels can produce up to 900 W, covering the 525 W maximum payload consumption. During eclipse periods, the satellite uses a 78 AH Li-ion battery. SMOS has a launch mass of 658 kg: a 275 kg platform, 355 kg payload, and 28 kg of fuel.

 

The SMOS satellite will deploy a new type of scientific instrument in space: a microwave imaging radiometer that operates between 1,400 – 1,427 MHz (L-band). The instrument is called Microwave Imaging Radiometer using Aperture Synthesis, or MIRAS, for short. MIRAS consists of a central structure and three deployable arms, and uses 69 antenna-receivers (LICEFs) for measuring microwave radiation emitted from the surface of the Earth. The instrument is the result of almost ten years of research and development.

 

Credits: ESA-AOES Medialab

 

The data collected by MIRAS needs to go through a validation process. The radiation received by the instrument is a function that depends not only on soil moisture and ocean salinity, other effects need to be considered when instrument data is converted into units of salinity and moisture.

 

Factors that have to be considered are the distribution of vegetation, the litter layer, the soil type, the varying roughness of the surface, and the physical temperature of the surface of the land and sea.

 

 

In order to quantify the effects of factors mentioned above, dedicated campaign activities were conducted. Ground-based and airborne instruments similar to the one mounted on SMOS were used to collect data that was correlated with in-situ observations made by large ground teams. Long-term observations were carried out from an oilrig platform in the Mediterranean and at the Concordia Station in Antarctica.

 

The Committee on Earth Observation Satellites (CEOS) has defined a number of levels for the SMOS Mission Data Products. They range from Raw Data to Level-3 Data Products, which are Soil Moisture and Ocean Salinity global maps. Level-3 data will be available from the SMOS Level 3/4 Processing Center in Spain.

 

Eurockot will provide the launch services for the SMOS mission. A Rockot launcher, which is derived from a Russian Intercontinental Ballistic Missile (ICBM) SS-19, will lift off from the Plesetsk Cosmodrome, 800 km north of Moscow. The Rockot launcher will inject the satellite in a 758 km quasi-circular orbit.

 

The CNES Satellite Operations Ground Segment and ESA/CDTI (Centro para el Desarrollo Technologico Industrial) Data Processing Ground Segment will be responsible for the SMOS mission ground segment.

 

Initially scheduled for 2008, the launch of the Earth Explorer SMOS satellite will take place some time from July to October 2009.

 

You can find more details about SMOS on the dedicated page on ESA’s web site.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis