OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Exploration category

 

Credits: NASA

 

 

As the primary cause of concern from space debris is physical damage upon impact, extensive efforts have been made for their detection. There are several detection methods, and they are grouped into two classes: active and passive.

 

Radar sensors fall into the first class, and radio interferometers and optical sensors in the second. One important element that has to be considered is the accuracy of the method used for detection.

 

 

The motion of an object in Earth orbit is completely determined if the so-called orbital elements are known. In theory, the orbital elements of a satellite can be calculated from only one observation. In practice, due to inherent observation errors, there is more than one observation needed to attain the precision required for orbital surveillance and prediction. Some 100-200 observations are required during the first days of orbit, 20-50 observations per day to update established orbits, and 200-300 observations per day to confirm and locate reentry in the case of decaying orbits.

 

In addition, the size of the debris is an important factor that affects the accuracy of the detection methods, and this is why only a small fraction of the space debris population is detectable, and as a consequence, catalogued. For example, present equipment is capable of tracking only objects bigger than 5 cm in diameter in low Earth orbit (altitudes of 160-2,000 km), and bigger than 50 cm in diameter in geosynchronous orbit (altitudes of 35,000 km). Further, the characteristics of certain type of orbits can make detection very difficult. For example, the debris population generated on highly elliptical and high inclination orbits with perigees situated deep in the Southern Hemisphere, also known as Molniya orbits, is very difficult to track. The geographic location of the ground stations used for space debris tracking makes detection impossible.

 

For these reasons, out of an estimated debris population of 600,000 objects bigger than 1 cm in diameter, only 19,000 can be tracked as of today.

 

The measurement and detection methods mentioned above are all remote methods. In-situ measurements of the characteristics of the debris environment have been conducted as well. In April 1984, the Space Shuttle Challenger placed into low Earth orbit a NASA spacecraft carrying a number of experiments for the purpose of characterizing the low Earth orbit environment. The spacecraft, the Long Duration Exposure Facility (LDEF), was a twelve-sided cylindrical structure and three-axis stabilized in order to ensure an accurate environmental exposure, and was supposed to spend one full year in orbit. Before the planned retrieval, the Space Shuttle fleet was grounded as a result of the Challenger accident on January 28, 1986. Eventually, the exposed facility was returned to Earth by the Space Shuttle Columbia during a mission in January 1990. After the extended mission, the results of the onboard experiments facilitated to a greater extent the understanding of the interactions between artificial objects and the space debris environment in Earth orbit as numerous impact craters were found on the outer layers of the spacecraft and analyzed.

 

In-situ measurements of the characteristics of the space debris environment have also been conducted by the European Retrievable Carrier (EURECA) and the Space Flyer Unit (SFU).

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 14, 2011

Sustainability in LEO: A Short History

Posted by

 

Credits: NASA

 

 

The adventure started on October 4, 1957, when the former Soviet Union successfully launched the first artificial satellite, Sputnik-1, using a rocket that was a modified Intercontinental Ballistic Missile (ICMB). Even if the political implications at that time were very important, as the launch ignited the Space Race within the Cold War, we can argue that the scientific accomplishments were more significant.

 

These accomplishments relied upon the theoretical work of scientists like Hermann Oberth and Konstantin Tsiolkovsky.

 

What followed this event, as mentioned above, was a race.

 

 

Explorer-1, the first American artificial satellite, was launched on January 31, 1958. Yuri Gagarin was the first human in outer space and the first to orbit the Earth on April 21, 1961. He was followed closely by Alan Shepard, who became the first American to travel into space onboard the Freedom-7 capsule, on May 5, 1961.

 

On August 19, 1964, the first geostationary communication satellite, Syncomm-3, was placed in orbit over the International Date Line. Syncomm-3 was used to relay the television coverage of the 1964 Summer Olympics in Tokyo, Japan, to the United States. The first to propose the concept of a communication satellite was Arthur C. Clarke, who in October 1945 published an article in the British magazine Wireless World that described the fundamental concepts behind the development of artificial satellites used to relay radio signals.

 

The first space station, Salyut-1, was launched on April 19, 1971. Even if the space station had a short operational life, as it re-entered the Earth atmosphere on October 11, 1971, it tested elements of the systems required on a space station and conducted scientific research and experiments. The construction of the first international research facility in Earth orbit, the International Space Station (ISS), began in 1998. The station is still under construction and it will be operational until at least 2015.

 

Where are we now, after 53 years of exploration of the space in the proximity of Earth? Since the launch of Sputnik on October 4, 1957, some 4,600 launches have orbited more than 6,000 satellites. All of these activities have created a cloud of orbiting particles around Earth. This new environment is referred to as space debris or orbital debris. Even if most of these particles are small in size (less than 1 cm), they are a source of great concern as the kinetic energies associated with impacts at orbital velocities, which are in the range 8-10 km/s or 28,800-36,000 km/h, are very high. It has been estimated that the total mass in orbit is 5,800 tons.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
December 16, 2010

Orbital’s Space Plane

Posted by

 

Credits: Orbital Sciences Corporation

 

Orbital Sciences Corporation is proposing a blended lifting body vehicle that will launch atop an expendable launch vehicle in response to NASA’s Commercial Crew Development-2 contract solicitation. The proposed configuration will provide safe and affordable transportation services to and from the International Space Station. The vehicle will carry a crew of four astronauts, and will reenter the Earth’s atmosphere and land on a conventional runway similar to a Space Shuttle.

 

The launch vehicle proposed for the launch stack is the United Launch Alliance Atlas V rocket. Orbital’s press release mentions that the whole configuration is flexible enough to accommodate other launch vehicles as well.

 

Orbital is leading a team of world-class space system manufacturers. The pressurized crew compartment will be provided by Thales Alenia Space, the human-rated avionics will be the responsibility of Honeywell and Draper Laboratory, and the United Launch Alliance will supply the launch vehicle. Northrop Grumman will be the airframe structures designer.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 29, 2010

Aerobots for Planetary Exploration

Posted by

 

Credits: Mark Dowman

 

Airships are making a big comeback now as the energy consumption for all modes of transportation is being re-analyzed. Missions with special requirements like surveillance and reconnaissance missions and transportation of heavy payloads to remote outposts are the main driver for the reinvention of the airship.

 

But Earth is not the only place where airships can be deployed. There are a number of destinations in the solar system that would make a perfect environment for deployment and operation of airships, like Mars, Venus, and Titan – Saturn’s largest moon.

 

 

The presence of an atmosphere makes possible the use of vehicles that can fly within atmosphere for planetary exploration. Also, planetary exploration with low-powered vehicles like airships really makes sense considering the fact that energy is always at a premium.

 

So far, the only extraterrestrial deployment of an airship was performed during the Vega mission to Venus, in 1984. Two balloons were released and they floated 54 km above the planet’s surface for nearly two days.

 

Lighter-Than-Air (LTA) AERial ROBOTS (AEROBOTS) would present some advantages over their Heavier-Than-Air (HTA) siblings and the traditional planetary scouts, the exploration rovers: they would have long-duration mission and long-distance capabilities, they would not have to deal with obstacle avoidance problems, and they have low-power consumption. However, the environment in which the airship will operate will impose some restrictions on the capabilities of the airship (consider things like atmospheric composition and density, temperature, and the amount of solar radiation available). More on the planetary environments in the solar system and airship evaluations for each one of them can be found here.

 

NASA has funded a number of projects for solar system exploration that make use of aerobots. The Jet Propulsion Laboratory’s Planetary Aerobot Program is developing balloons to support scientific payloads in the atmosphere of other planets in our solar system. You can find more details about JPL’s Planetary Aerobot Program here.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 11, 2010

Proba-3

Posted by

 

Credits: ESA

 

Formation flying has been a field of study since the beginning of the manned space flight. The final lunar spacecraft of the Apollo program had to be assembled in orbit. Also, docking maneuvers were required during the Skylab missions from 1973 to 1979.

 

The current focus of spacecraft formation flying is on maintaining a formation of various spacecraft. Maintaining the relative position of a cluster of satellites in orbit is much more challenging than having two or more spacecraft docking, as the first is more sensitive to modeling errors.

 

ESA’s Proba-3 will be the demonstrator for the technologies required for formation flying of multiple spacecraft.

 

 

The two independent, three-axis stabilized spacecraft comprising the Proba-3 mission will form an external coronagraph. An external coronagraph is a much more effective instrument than a terrestrial coronagraph, as the complete absence of atmosphere eliminates the glare that affects the observations from the ground.

 

By maintaining an accurate relative position, one of the spacecraft will block the direct light from the Sun so that the solar corona can be observed by the instruments mounted on the other. It is expected that the two spacecraft will be capable of positioning relative to each other with a sub-millimeter accuracy over a separation range of 25 to 250 meters. This positioning will be made possible by using S-band radio metrology and optical laser techniques.

 

You can find out more about the Proba-3 mission on ESA’s website.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 7, 2010

How Tough is Life in LEO?

Posted by

 

Credits: NASA

 

In a nutshell, it is really tough! The higher you go, more bad things can happen to you… the increasingly rarefied air, freezing temperatures, ionized atoms, radiation, and space debris make life challenging. So, besides thinking of how to place spacecraft in orbit, engineers must consider all of the factors mentioned above (and much more) when designing a spacecraft.

 

 

The space environment (the vacuum, the radiation, the space debris, etc.) definitely poses big challenges to spacecraft design engineers. From 1971 to 1989, more than 2,700 spacecraft anomalies related to interactions with the space environment were recorded. These interactions with the space environment are called space environment effects and the changes in the space environment define what is called the space weather. Believe it or not, there are dedicated programs aimed at developing the ability to predict these changes in the same way the weather forecasting does for terrestrial weather. The Space Weather program was formed in the mid-1990s by the National Science Foundation (NSF). The Europeans developed a similar program under the umbrella of the European Space Agency (ESA).

 

The space environment effects can be grouped into several categories. Such categories include: vacuum, neutral, plasma, radiation, and micrometeorid/orbital debris. So, basically, we can discuss the effects of the vacuum environment, the neutral environment, etc. Each one of these environments interact with the subsystems that comprise a spacecraft: the propulsion system that provides the means of maintaining a certain orbit or attitude, the electrical power system that provides power to the rest of the subsystems onboard, the thermal control system, the attitude and orbital determination and control system, etc.

 

The vacuum environment imposes challenges when it comes to designing the structure, choosing the materials, and defining a strategy for thermal control. The pressure differential between the inside and the outside of a manned spacecraft is tremendous (around 350 km above the surface of the Earth, the pressure is ten orders of magnitude less). The lack of atmosphere translates into the fact that the spacecraft will have to deal with solar ultraviolet (UV) radiation (the UV radiation is energetic enough to degrade material properties). Also, the spacecraft can only cool itself by conduction or radiation.

 

Credits: NASA

 

Even if very rarefied, the neutral atmosphere in low Earth orbit is dense enough to cause a significant atmospheric drag force. The atoms can physically sputter material from surfaces and even cause erosion. All these mechanical and chemical interactions depend on the atmospheric density.

 

In low Earth orbit, the solar UV radiation ionizes the oxygen and nitrogen atoms. This environment, known as the plasma environment, can give rise to very interesting effects, like spacecraft charging and arcing between regions of differing potentials.

 

 

By far, the most dangerous environment in Earth orbit is the radiation environment. In the regions of charged particles, known as trapped radiation belts, particles with energy levels in the order of MeV pass through the surface layer and interact with the materials inside the spacecraft. Present shielding technology cannot protect living organisms inside a spacecraft in these regions.

 

Micrometeoroids and orbital debris are a cause of great concern to spacecraft design engineers and spacecraft operators as the kinetic energies associated with impacts at orbital velocities are very high. The main effect on spacecraft in this case is the physical damage upon impact. Other effects include surface erosion, ejecta resulted from impacts, changes in thermal control properties, and generation of electro-magnetic impulses (EMIs).

 

As most of the characteristics of the space environment were determined by remote observations or during short duration missions, one long duration mission was necessary to verify and validate these measurements.

 

In April 1984, the Space Shuttle Challenger placed into low Earth orbit (LEO) a spacecraft carrying a number of experiments for the purpose of characterizing the low Earth orbit environment. The spacecraft (known as the Long Duration Exposure Facility, or LDEF for short) was a twelve-sided cylindrical structure three-axis stabilized in order to ensure an accurate environmental exposure. The spacecraft was supposed to spend one year in orbit, but just before the planned retrieval, the Space Shuttle fleet was grounded as a result of the Challenger accident on January 28, 1986.

 

The spacecraft was returned to Earth by the Space Shuttle Columbia in January 1990. After almost six years in low Earth orbit, the results of the experiments onboard the facility contributed a great deal to the understanding of interactions between artificial objects and the environment in low Earth orbit.

 

You can find all the above in much more detail in Alan Tribble’s book The Space Environment – Implications for Spacecraft Design. Alan Tribble presents an excellent account of the effects the space environment can have on operational spacecraft. The book offers a unique perspective, as it combines the study of the space environment with spacecraft design engineering. .

 

Alan Tribble spent over ten years designing spacecraft. He is a technical project manager in the International Software Defined Radios group for Rockwell Collins.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis