OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Exploration category

October 25, 2021

Lucy Launch

Posted by

 

 

Wikipedia dicit:

Lucy was launched from Cape Canaveral SLC-41 on 16 October 2021, at 09:34:00.192 UTC on the 401 variant of a United Launch Alliance Atlas V launch vehicle, after which it will gain two gravity assists from Earth; one in 2022, and one in 2024. In 2025, it will fly by the inner main-belt asteroid 52246 Donaldjohanson, which was named after the discoverer of the Lucy hominin fossil. In 2027, it will arrive at the L4 Trojan cloud (the Greek camp of asteroids that orbits about 60° ahead of Jupiter), where it will fly by four Trojans, 3548 Eurybates (with its satellite), 15094 Polymele, 11351 Leucus, and 21900 Orus. After these flybys, Lucy will return to Earth in 2031 for another gravity assist toward the L5 Trojan cloud (the Trojan camp which trails about 60° behind Jupiter), where it will visit the binary Trojan 617 Patroclus with its satellite Menoetius in 2033. The mission may end with the Patroclus–Menoetius flyby, but at that point Lucy will be in a stable, 6-year orbit between the L4 and L5 clouds, and a mission extension will be possible.

Three instruments comprise the payload: a high-resolution visible imager, an optical and near-infrared imaging spectrometer, and a thermal infrared spectrometer. Harold F. Levison of the Southwest Research Institute in Boulder, Colorado is the principal investigator, with Cathy Olkin of Southwest Research Institute as the mission’s deputy principal investigator. NASA’s Goddard Space Flight Center will manage the project.

Exploration of Jupiter Trojans is one of the high-priority goals outlined in the Planetary Science Decadal Survey. Jupiter Trojans have been observed by ground-based telescopes and the Wide-field Infrared Survey Explorer to be “dark with… surfaces that reflect little sunlight”. Jupiter is 5.2 AU (780×106 km; 480×106 mi) from the Sun, or about five times the Earth-Sun distance. The Jupiter Trojans are at a similar distance but can be somewhat farther or closer to the Sun depending on where they are in their orbits. There may be as many Trojans as there are asteroids in the asteroid belt.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 13, 2021

Launching Lucy

Posted by

 

 

NASA dicit:

On October 16, 2021, our Lucy spacecraft will begin its journey to visit a record-breaking number of asteroids. The 12-year mission starts from NASA’s Kennedy Space Center where it’ll launch aboard a United Launch Alliance Atlas V 401 rocket. From there, Lucy will be the first spacecraft to visit a record number of destinations in independent orbits around the sun – one main belt asteroid and seven of Jupiter’s Trojan Asteroids.

Like the mission’s namesake – the fossilized human ancestor, “Lucy,” whose skeleton provided unique insight into humanity’s evolution – Lucy will revolutionize our knowledge of planetary origins and the formation of the solar system. Lucy’s first launch attempt in its 21-day launch window is scheduled for 5:34 a.m. EDT on October 16.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 12, 2021

Lucy Overview

Posted by

 

 

Wikipedia dicit:

Lucy is a planned NASA space probe that will complete a 12-year journey to eight different asteroids, visiting a main belt asteroid as well as seven Jupiter trojans, asteroids which share Jupiter’s orbit around the Sun, orbiting either ahead of or behind the planet. All target encounters will be fly-by encounters. The Lucy spacecraft is the centerpiece of a US$981 million mission.

On 4 January 2017, Lucy was chosen, along with the Psyche mission, as NASA’s Discovery Program missions 13 and 14 respectively. The mission is named after the Lucy hominid skeleton, because the study of Trojans could reveal the “fossils of planet formation”: materials that clumped together in the early history of the Solar System to form planets and other bodies. The Australopithecus itself was named after the 1967 Beatles song “Lucy in the Sky with Diamonds”.

Lucy is planned to launch in October 2021 on the 401 variant of a United Launch Alliance Atlas V launch vehicle, after which it will gain two gravity assists from Earth; one in 2022, and one in 2024. In 2025, it will fly by the inner main-belt asteroid 52246 Donaldjohanson, which was named after the discoverer of the Lucy hominid fossil. In 2027, it will arrive at the L4 Trojan cloud (the Greek camp of asteroids that orbits about 60° ahead of Jupiter), where it will fly by four Trojans, 3548 Eurybates (with its satellite), 15094 Polymele, 11351 Leucus, and 21900 Orus. After these flybys, Lucy will return to Earth in 2031 whereupon it will receive another slight gravity assist to take it to the L5 Trojan cloud (the Trojan camp which trails about 60° behind Jupiter), where it will visit the binary Trojan 617 Patroclus with its satellite Menoetius in 2033. The mission may end with the Patroclus–Menoetius flyby, but at that point Lucy will be in a stable, 6-year orbit between the L4 and L5 clouds, and a mission extension will be possible.

Three instruments comprise the payload: a high-resolution visible imager, an optical and near-infrared imaging spectrometer and a thermal infrared spectrometer.

Exploration of Jupiter Trojans is one of the high priority goals outlined in the Planetary Science Decadal Survey. Jupiter Trojans have been observed by ground-based telescopes and the Wide-field Infrared Survey Explorer to be “dark with… surfaces that reflect little sunlight”. Jupiter is 5.2 AU (780×106 km; 480×106 mi) from the Sun, or about five times the Earth-Sun distance. The Jupiter Trojans are at a similar distance but can be somewhat farther or closer to the Sun depending on where they are in their orbits. There may be as many Trojans as there are asteroids in the asteroid belt.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 31, 2021

Curiosity Explores Mount Sharp

Posted by

 

 

NASA dicit:

NASA’s Curiosity rover explores Mount Sharp, a 5-mile-tall (8-kilometer-tall) mountain within the basin of Gale Crater on Mars.

Curiosity landed nine years ago on August 5, 2012, with a mission to study whether different Martian environments could have supported microbial life in the ancient past, when long-lived lakes and groundwater existed within Gale Crater.

Video credit: NASA/JPL-Caltech/MSSS

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 25, 2021

OSIRIS-REx

Posted by

 

 

Wikipedia dicit:

OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid-study and sample-return mission. The mission’s primary goal is to obtain a sample of at least 60 g (2.1 oz) from 101955 Bennu, a carbonaceous near-Earth asteroid, and return the sample to Earth for a detailed analysis. The material returned is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth.

OSIRIS-REx was launched on 8 September 2016, flew past Earth on 22 September 2017, and rendezvoused with Bennu on 3 December 2018. It spent the next several months analyzing the surface to find a suitable site from which to extract a sample. On 20 October 2020, OSIRIS-REx touched down on Bennu and successfully collected a sample. Though some of the sample escaped when the flap that should have closed the sampler head was jammed open by larger rocks, NASA is confident that they were able to retain between 400 g and over 1 kg of sample material, well in excess of the 60 g (2.1 oz) minimum target mass. OSIRIS-REx is expected to return with its sample to Earth on 24 September 2023.

Bennu was chosen as the target of study because it is a “time capsule” from the birth of the Solar System. Bennu has a very dark surface and is classified as a B-type asteroid, a sub-type of the carbonaceous C-type asteroids. Such asteroids are considered “primitive”, having undergone little geological change from their time of formation. In particular, Bennu was selected because of the availability of pristine carbonaceous material, a key element in organic molecules necessary for life as well as representative of matter from before the formation of Earth. Organic molecules, such as amino acids, have previously been found in meteorite and comet samples, indicating that some ingredients necessary for life can be naturally synthesized in outer space.

The cost of the mission is approximately US$800 million, not including the Atlas V launch vehicle, which is about US$183.5 million. It is the third planetary science mission selected in the New Frontiers program, after Juno and New Horizons. The principal investigator is Dante Lauretta from the University of Arizona. If successful, OSIRIS-REx will be the first United States spacecraft to return samples from an asteroid. The Japanese probe Hayabusa returned samples from 25143 Itokawa in 2010, and Hayabusa2 returned from 162173 Ryugu in December 2020. On 10 May 2021, OSIRIS-REx successfully completed its departure from Bennu and began its 2 year return to Earth.

Video credit: Aerojet Rocketdyne

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 11, 2021

Parker Swings by Venus

Posted by

 

 

NASA dicit:

During a brief swing by Venus, NASA’s Parker Solar Probe detected a natural radio signal that revealed the spacecraft had flown through the planet’s upper atmosphere. This was the first direct measurement of the Venusian atmosphere in nearly 30 years — and it looks quite different from Venus’ past. A study published today in Geophysical Research Letters confirms that Venus’ upper atmosphere undergoes puzzling changes over a solar cycle, the Sun’s 11-year activity cycle. This marks the latest clue to untangling how and why Venus and Earth are so different.

The data sonification in the video translates data from Parker Solar Probe’s FIELDS instrument into sound. FIELDS detected a natural, low-frequency radio emission as it moved through Venus’ atmosphere that helped scientists calculate the thickness of the planet’s electrically charged upper atmosphere, called the ionosphere. Understanding how Venus’ ionosphere changes will help researchers determine how Venus, once so similar to Earth, became the world of scorching, toxic air it is today.

Video credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/Mark SubbaRao (NASA/GSFC): Lead Visualizer/Glyn Collinson (NASA/GSFC): Lead Scientist/Joy Ng (USRA): Lead Producer/Lina Tran (SGT): Lead Writer

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis