OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

08-1-11

Juno

Posted by

 

Credits: NASA/JPL

 

 

Juno is a NASA spacecraft scheduled to start its journey to Jupiter in a few days. Juno will help scientists understand the origin and evolution of Jupiter. While the dense cover of clouds helps Jupiter keep its secrets away from Earth observers, Juno will get close enough to Jupiter so that fundamental processes and conditions characteristic to the early solar system will be revealed.

 

 

First, Juno will try to determine if Jupiter has a solid planetary core. While this is an important piece of the puzzle, it might also help determine how Jupiter’s magnetic field is generated (by the way, scientists are still unclear how Earth’s magnetic field is generated, and there are several theories trying to explain it). Juno will also map Jupiter’s magnetic field, study the auroras, and determine the amount of water and ammonia in the atmosphere.

 

The launch vehicle to lift off with Juno is the most powerful Atlas rocket ever built, the United Launch Alliance Atlas V 551. In this configuration, an Atlas V launch vehicle can lift 18,810 kg to Low Earth Orbit (LEO) and 8,900 kg to Geosynchronous Transfer Orbit (GTO). However, the Atlas V 551 is not powerful enough to put Juno on a direct trajectory to Jupiter. In order to get as far as Jupiter’s orbit, Juno has to perform a gravity assist maneuver.

 

Juno will orbit Jupiter in a polar orbit and get as close as 5,000 km above the planet’s top clouds. This will allow the spacecraft to do science below the radiation belt of the planet and allow for a complete coverage of the planet. The low altitude will allow for a detailed analysis of the planet’s atmosphere. The orbit will also allow Juno to take a very close look at the auroras that are forming at the north and south Jovian poles.

 

The scientific payload carried by Juno includes a gravity/radio science system, a microwave radiometer, a vector magnetometer, particle detectors, ultraviolet and infrared spectrometers, and a color camera to capture images of the Jovian poles.

 

One interesting feature of the spacecraft is the electronics vault. Even if Juno’s highly elliptical orbit avoids the deadly radiation belts by approaching the planet at the north pole, skimming the clouds below the radiation belts, and exiting over the south pole, as an additional protection measure the onboard electronics are protected by a radiation shielded vault. This will ensure that the computers will not malfunction due to single events, and that the electronics will meet the requirements for the mission lifespan.

 

While the previous missions to the Jovian system have been powered by Radio Thermal Generators (RTGs), Juno will benefit from advances in solar power cell design. The cells used for Juno’s solar panels are far more efficient and radiation tolerant than the cells available to space systems engineers decades ago. Three solar panels that extend more than 10 meters from the hexagonal body of the spacecraft will provide the power required by the scientific instruments.

 

The mission is scheduled for launch on August 5, 2011. After coasting for more than two years, in October 2013, Juno will swing by Earth. The gravity assist maneuver will provide the delta V necessary for the spacecraft to reach Jupiter’s orbit. Juno will arrive at Jupiter in July 2016. After performing the Jupiter Orbital Insertion (JOI) maneuver, the spacecraft will start to collect and send back home scientific data.

 

Juno will send back science and telemetry data through the Deep Space Network (DSN), a network of powerful antennas located in Madrid, Spain; Barstow, California; and Canberra, Australia.

 

At the end of the mission, planned for October 2017, and after 33 complete revolutions around Jupiter, Juno will fire up its thrusters and decrease its velocity, enter the upper atmosphere of Jupiter, and get incinerated. Why such a tragic end to the Juno mission? Remember the Prime Directive? While the Prime Directive is known only to Star Trek fans… and it might get serious consideration only from Star Fleet officers, the possibility of having Juno crashing on one of the Jovian satellites (especially Europa) has to be eliminated. NASA scientists take contamination of other worlds very seriously.

 

You can find out more about the Juno mission on NASA’s dedicated web site. The Juno mission is managed by NASA’s Jet Propulsion Laboratory in Pasadena, California. The Principal Investigator for the Juno mission is Dr. Scott Bolton of Southwest Research Institute in San Antonio, Texas. The spacecraft was designed and built by Lockheed Martin of Denver, Colorado.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

Credits: Ronald C. Wittmann

 

There are numerous examples of successful implementation of mitigation measures, but also some not so successful, and even failures. There are two cases that I will mention, one from each camp.

 

Cosmos 954 was a Soviet Radar Ocean Reconnaissance Satellite (RORSAT) powered by an onboard nuclear reactor. At the time, the Russian designers were not able to find an alternative for the power system due to the power requirements of the payload carried by the spacecraft, which was a powerful radar. A post-mission mitigation method that involved parking the nuclear reactor on a higher orbit (with an estimated lifetime of hundreds of years) was adopted.

 

 

It seems that not enough effort was put into designing a reliable solution for the post-mission disposal method of the nuclear reactor. Besides the inherent low reliability associated with hardware in developmental phases, the quality assurance practices at that time were most likely affected by the conditions of the Cold War. In both camps, the concerns regarding the environment were ignored in favor of the military and political goals.

 

In 1978, COSMOS 954 failed to separate its nuclear reactor core and boost it into the post-mission parking orbit as planned. The reactor remained onboard the satellite and eventually re-entered into the Earth atmosphere and crashed near the Great Slave Lake in Canada’s Northwest Territories. The radioactive fuel was spread over a 124,000 km2 area. The recovery teams retrieved 12 large pieces of the reactor, which comprised only 1% of the reactor fuel. All of these pieces displayed lethal levels of radioactivity.

 

To highlight how dangerous and how serious the use of nuclear power sources for space mission is, consider these figures: at present, there are 32 defunct nuclear reactors in orbit around the Earth. There are also 13 reactor fuel cores and at least 8 radio-thermal generators (RTGs). The total mass of RTG nuclear fuel in orbit is in the order of 150 kg. The total mass of Uranium-235 reactor fuel in orbit is in the order of 1,000 kg.

 

 

RADARSAT-1 is an Earth observation satellite developed in Canada. Equipped with a powerful synthetic aperture radar (SAR) instrument, RADARSAT-1 monitors environmental changes and the planet’s natural resources. Well beyond the planned five-year lifetime, the satellite continues to provide images of the Earth for both scientific and commercial applications.

 

Following the guidelines of the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) document entitled Guidelines for Space Debris Mitigation, and implementing mitigation measures required for the space hardware manufacturers in Canada, the Canadian Space Agency has prepared post-mission disposal plans for its remote sensing satellite RADARSAT-1. As a prerequisite to the end of mission procedures, the energy stored in the propellant tanks, the wheels, and the batteries of the satellite will be removed, as suggested in the COPUOS guidelines. Also, the remaining fuel will be used to lower the orbit in addition to orienting the satellite so that drag is maximized. These measures will aim to reduce the orbit life span of the satellite to the lowest possible.

 

 

Simulations performed using NASA’s long-term debris environment evolutionary model (LEO-to-GEO Environment Debris model or LEGEND) or ESA’s debris environment long-term analysis tool (DELTA) have shown that even if new launches are not conducted, the existing population of orbital debris will continue to increase. This increase in number is caused by collisions between the objects already orbiting the Earth at the present time. Following the Iridium/Cosmos collision in 2009, the U.S. Air Force has issued hundreds of notifications to Russia and China regarding potential crashes between their satellites and other objects in orbit.

 

Even if we are contemplating grim future developments like the one mentioned above, international initiatives do not seem to gain enough momentum. NASA (National Aeronautics and Space Administration) and DARPA (Defense Advanced Research Projects Agency) were the sponsors of the first International Conference on Orbital Debris Removal, which was held in Chantilly, Virginia, December 8-10, 2009. The conclusions of the conference included the observation that:

 

“No evident consensus or conclusions were reached at the conference. Removing existing, non-cooperative objects from Earth orbit is an extremely difficult and likely expensive task. Although some of the techniques for removal discussed at the Conference have the potential of being developed into technically feasible systems, each concept seems to currently suffer from either a lack of development and testing or economic viability.”

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
07-10-09

End of Journey for Ulysses

Posted by

 

Credits: ESA – D. Hardy

 

On June 30, 2009, the Ulysses mission came to an end, one year after the predicted mission end date. Ulysses is one of the longest space missions to date, and holds the record for the longest running ESA operated spacecraft, with a total mission duration of 6,842 days (18 years, 8 months, and 24 days).

 

 

A joint venture of NASA and ESA, Ulysses was launched on October 6, 1990, from the STS-41 Space Shuttle Discovery mission. Being an Out-Of-The-Ecliptic (OOE) mission, the Ulysses mission studied the Sun at all latitudes. The initial gravity assist at Jupiter on February 8, 1992, injected the spacecraft in an orbit around the Sun with an inclination to the ecliptic of 80.2 degrees.

 

Besides studying the north and south poles of the Sun, Ulysses also made observations on Jupiter and the comets Hyakutake and McNaught-Hartley.

 

The spacecraft is box-shaped, 3.2×3.3×2.1 m in size. Three external features of the spacecraft are the High Gain Antenna (HGA), which is a 1.65 m diameter parabolic dish, the Radio-isotope Thermoelectric Generator (RTG), and the two 35 m antennae for the Unified Radio and Plasma (URAP) instrument. The HGA was used for communicating with ground-based stations in both X-band and S-band radio frequency bands.

 

Credits: ESA

 

If you are passionate about spacecraft design, an overview of the Ulysses spacecraft, with subsystem schematics and descriptions of all units, is available.

 

The link contains presentations of the Attitude and Orbit Control Subsystem, the Telemetry, Tracking, and Command Subsystem, the Data Handling Subsystem, and the Power and Thermal Subsystem. It is 1980s technology, but very tasty food for an engineer’s brains.

 

 

During its long-duration mission, Ulysses made observations above and below the poles of the Sun. Fundamental scientific discoveries and contributions to our understanding of the Sun and the heliosphere were made. Due to the characteristics of its orbit, Ulysses was able to perform direct measurements of interstellar dust and gas.

 

You can find out more about Ulysses on ESA’s and NASA’s websites.

 

Planetary Radio released an interview with Nigel Angold, the ESA Ulysses Mission Operations Manager. Find out how engineers kept the Ulysses spacecraft alive for so long. I invite everyone to listen to it.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

In a previous post we presented the most common solution for power generation onboard unmanned spacecrafts (solar cells and secondary batteries) and mentioned some of the manned spacecrafts that employ this solution.

 

Credits: NASA

 

However, solar cells, in combination with secondary batteries, are not usable for missions beyond the asteroid belt, because there the sun’s energy becomes too diffuse. As deep space missions were designed, a new power source was required. The radioisotope thermoelectric generators, also known as RTGs, met the requirements for this kind of mission. RTGs are proven, compact, and reliable power sources that can produce up to several kilowatts of power and operate under severe conditions for many years.

 

RTGs convert the heat generated by a decay of radioactive fuel into electricity. There are two major components that RTGs consist of: the heat source that contains the radioactive material and a set of solid-state thermocouples that convert the heat energy to electricity. The principle that RTGs rely on is not a new discovery. In 1821, Thomas Johann Seebeck discovered the effect that bears his name and that allows us to convert heat directly into electricity using a simple and robust device. An electrical current is generated when two dissimilar electrically conductive materials are connected in a closed circuit and their junctions are kept at different temperatures. The heat generated by the radioactive decay is used to heat the hot junction of the thermocouple, and exposure to the cold outer space is used to maintain the temperature of the cold junction.

 

Credits: NASA

 

Over the years, RTGs have been used safely and reliably on many missions. Among these missions: some of the Apollo flights to the moon, the Pioneer spacecrafts, the Viking landers, the Voyager missions, the Galileo mission, the Ulysses mission, and the Cassini-Huygens mission. The present conversion efficiency achieved by the thermocouples is around 10%, and research continues in order to improve it. Because of the internal resistance and other losses, the overall RTG efficiency is typically 6-7%, which means that the amount of waste heat for every unit of electrical energy produced is quite large.

 

Even if the radioisotopes used present a loss in energy with time, the half-life of the radioisotopes is not a major life-limiting factor of current RTGs. Major life-limiting factors include the degradation of the thermoelectric elements and the breakdown of insulators because of temperature and radiation.

 

The radiation emissions from RTGs can damage the electronics onboard spacecrafts. This is why it is necessary to mount the units on booms at some distance from the body of the spacecraft or, at least, provide shielding of some sort in the on orbit configuration. One important thing to mention is that in the launch configuration, when the RTG boom cannot be deployed, the radiation exposure cannot exceed the inherent radiation tolerance of the onboard electronics.

 

There are two more solutions spacecraft engineers employ to generate power onboard spacecrafts and we will present them in our next post. Please come back later to read our conclusion to the series.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis