Nexø II rocket launch.
Video Credit: Copenhagen Suborbitals
Nexø II rocket launch.
Video Credit: Copenhagen Suborbitals
ESA dixit:
“ESA’s Earth Explorer Aeolus satellite lifted off on a Vega rocket from Europe’s Spaceport in Kourou, French Guiana, at 21:20 GMT (23:20 CEST, 18:20 local time) on 22 August 2018. Aeolus carries one of the most sophisticated instruments ever to be put into orbit. The first of its kind, the Aladin instrument includes revolutionary laser technology to generate pulses of ultraviolet light that are beamed down into the atmosphere to profile the world’s winds – a completely new approach to measuring the wind from space. By profiling the lowermost 30 km of the atmosphere, Aeolus will give scientists global information on the speed of the wind in near-real time. This will improve our understanding of how wind, pressure, temperature and humidity are interlinked. This new mission will also provide insight into how the wind influences the exchange of heat and moisture between Earth’s surface and the atmosphere. These aspects are important for understanding climate change. As well as advancing science and improving weather forecasts, data from Aeolus will be used in air-quality models to improve forecasts of dust and other airborne particles that affect public health.”
Video Credit: ESA
NASA dixit:
“Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements.”
Video Credit: NASA Johnson
NASA dixit:
“For centuries, a massive store of carbon has been locked underground in the Arctic’s permanently frozen soil known as permafrost. As Earth’s climate continues to warm, that carbon has begun to leach into the atmosphere, the result of microbes waking up and digesting once-frozen organic materials.
A new NASA-funded study focuses on a mechanism that could accelerate the release of this atmospheric carbon, the result of thermokarst lakes. These lakes form when thawing permafrost causes the ground to slump, creating a depression that collects rain and snowmelt and perpetuates a cycle of further permafrost thaw.”
Video Credit: NASA Goddard
NASA dixit:
“The Gamma-ray Burst Monitor (GBM) is one of the instruments aboard the Fermi Gamma-ray Space Telescope. The GBM studies gamma-ray bursts, the most powerful explosions in the universe, as well as other flashes of gamma rays. Gamma-ray bursts are created when massive stars collapse into black holes or when two superdense stars merge, also producing a black hole. The GBM sees these bursts across the entire sky, and scientists are using its observations to learn more about the universe.”
Video Credit: NASA Goddard
NASA dixit:
“This time-lapse video, obtained June 8, 2018, shows the precise choreography of NASA’s Neutron star Interior Composition Explorer (NICER) as it studies pulsars and other X-ray sources from its perch aboard the International Space Station. NICER observes and tracks numerous sources each day, ranging from the star closest to the Sun, Proxima Centauri, to X-ray sources in other galaxies. Movement in the movie, which represents a little more than one 90-minute orbit, is sped up by 100 times.
One factor in NICER’s gyrations is the motion of the space station’s solar arrays, each of which extends 112 feet (34 meters). Long before the panels can encroach on NICER’s field of view, the instrument pirouettes to aim its 56 X-ray telescopes at a new celestial target.
As the movie o pens, the station’s solar arrays are parked to prepare for the arrival and docking of the Soyuz MS-09 flight, which launched on June 6 carrying three members of the Expedition 56 crew. Then the panels reorient themselves and begin their normal tracking of the Sun.
Neutron stars, also called pulsars, are the crushed cores left behind when massive stars explode. They hold more mass than the Sun in a ball no bigger than a city. NICER aims to discover more about pulsars by obtaining precise measures of their size, which will determine their internal make-up. An embedded technology demonstration, called Station Explorer for X-ray Timing and Navigation Technology (SEXTANT), is paving the way for using pulsars as beacons for a future GPS-like system to aid spacecraft navigation in the solar system — and beyond.”
Video Credit: NASA Goddard