OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

May 14, 2025

LISTER and LPV

Posted by

 



 

Mea AI adiutor dicit:

Honeybee Robotics, a subsidiary of Blue Origin, contributed two innovative instruments—LISTER and LPV—to Firefly Aerospace’s Blue Ghost Mission 1, which successfully landed on the Moon in March 2025 as part of NASA’s Commercial Lunar Payload Services (CLPS) program. These instruments are pivotal in advancing our understanding of the Moon’s thermal properties and developing efficient regolith sampling techniques for future lunar exploration.

LISTER: Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity

LISTER is designed to measure the heat flow from the Moon’s interior, providing insights into the Moon’s thermal evolution and internal structure. By assessing how heat escapes from the lunar interior, scientists can infer details about the Moon’s composition and geological history.

LISTER is a collaborative effort between Honeybee Robotics and Texas Tech University. It employs a sophisticated pneumatic drill capable of penetrating up to 3 meters into the lunar regolith. At every 0.5-meter interval, the drill pauses to deploy a custom-built thermal probe that measures temperature gradients and thermal conductivity at various depths. LISTER weighs approximately 4.3 kilograms.

During its operation on the lunar surface, LISTER successfully drilled into the regolith and collected thermal data at multiple depths. These measurements are crucial for understanding the Moon’s internal heat flow and contribute to models of its thermal and geological evolution. The data also aid in assessing the Moon’s suitability for future human habitation and resource utilization.

LPV: Lunar PlanetVac

LPV is a technology demonstration aimed at efficiently collecting lunar regolith samples. Its success is vital for future missions that require in-situ resource utilization or sample return capabilities.

LPV is installed on one of the Blue Ghost lander’s legs. It utilizes a burst of compressed gas to dislodge and propel regolith particles into a collection chamber. Capable of collecting particles up to 1 centimeter in diameter. Features a tube that transports the collected material to onboard instruments for analysis or storage.

LPV successfully demonstrated its ability to collect and transfer lunar soil samples using its gas-driven mechanism. The efficient and contamination-free sampling process validates LPV’s potential for future missions that aim to analyze or return lunar materials to Earth. Its performance also provides valuable data for refining regolith collection techniques in low-gravity environments.

Blue Ghost Mission 1, which landed in Mare Crisium, carried a total of ten NASA payloads, including LISTER and LPV. The mission operated for a full lunar day (~14 Earth days), during which all instruments performed their designated tasks. The successful deployment and operation of LISTER and LPV not only achieved their scientific objectives but also demonstrated the viability of these technologies for future lunar exploration endeavors. Their contributions are instrumental in paving the way for sustained human presence on the Moon and the development of lunar resources.

Video credit: Blue Origin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 13, 2025

NICER Updates

Posted by

 

 

Mea AI adiutor dicit:

The Neutron Star Interior Composition Explorer (NICER) is a NASA mission launched in June 2017 and mounted on the International Space Station (ISS). Its primary objective is to study neutron stars—ultra-dense remnants of massive stars that have undergone supernova explosions. By observing X-ray emissions from these celestial objects, NICER aims to provide insights into their internal structures and the fundamental physics governing matter under extreme conditions.

NICER’s core component is the X-ray Timing Instrument (XTI), designed for high-precision timing and spectroscopy of soft X-rays in the 0.2–12 keV energy range. The XTI comprises 56 co-aligned X-ray concentrator optics, each paired with a silicon drift detector. These concentrators utilize grazing-incidence optics with 24 nested mirrors to focus incoming X-rays onto their respective detectors, enhancing sensitivity and resolution.

NICER is mounted on the ISS’s ExPRESS Logistics Carrier-2. It features a two-axis pointing system that allows the instrument to track celestial targets across the sky. An integrated star tracker ensures precise alignment, enabling NICER to observe multiple targets during each 92-minute orbit of the ISS.

To achieve its scientific goals, NICER incorporates a GPS-based timing system capable of tagging photon arrival times with sub-microsecond accuracy. This high temporal resolution is crucial for studying the rapid rotational periods of pulsars and other time-sensitive phenomena.

NICER has significantly advanced our understanding of neutron star interiors by providing precise measurements of their masses and radii. These observations have helped constrain the equation of state for ultra-dense matter, shedding light on the behavior of matter at densities exceeding those found in atomic nuclei.

An extension of NICER’s mission, known as SEXTANT (Station Explorer for X-ray Timing and Navigation Technology), successfully demonstrated the use of X-ray pulsars for autonomous spacecraft navigation. By measuring the timing of X-ray pulses from known pulsars, SEXTANT was able to determine the ISS’s position in space, paving the way for future deep-space navigation systems.

In 2018, NICER discovered an X-ray pulsar in the fastest known stellar orbit, with a companion star completing an orbit every 38 minutes. This finding provides valuable data on the dynamics of compact binary systems and the extreme gravitational environments in which they exist.

NICER observed the brightest X-ray burst ever recorded from the neutron star SAX J1808.4−3658. This event offered insights into thermonuclear processes on neutron star surfaces and the mechanisms driving such energetic emissions.

Although primarily focused on neutron stars, NICER has also contributed to black hole research. It mapped “light echoes” from the stellar-mass black hole MAXI J1820+070, revealing changes in the size and shape of the surrounding accretion disk and corona. These observations enhance our understanding of black hole accretion processes and their immediate environments.

In May 2023, NICER’s thermal shields developed a leak, allowing stray light to interfere with its X-ray detectors. To address this issue, NASA designed specialized patches delivered to the ISS via the Cygnus NG-21 resupply mission in August 2024. Astronauts successfully applied these patches during a spacewalk on January 16, 2025, restoring NICER’s full observational capabilities.

As of early 2025, NICER has contributed to over 300 scientific publications, underscoring its significant role in advancing astrophysical research. Its high-precision measurements continue to provide valuable data for the scientific community, enhancing our understanding of neutron stars and other cosmic phenomena.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 12, 2025

Fram2 Polar Orbit Views

Posted by

 

 

Mea AI adiutor dicit:

SpaceX’s Fram2 mission, launched on March 31, 2025, from Kennedy Space Center, marked a historic milestone as the first human spaceflight to orbit over Earth’s polar regions. This privately funded mission, led by cryptocurrency entrepreneur Chun Wang, featured a diverse international crew and aimed to advance scientific research and exploration.

The mission’s name, Fram2, pays homage to the Norwegian exploration ship Fram, symbolizing a new era of polar exploration—this time from space. The spacecraft completed multiple orbits over both the North and South Poles, providing unprecedented views and data.

The crew members are:

Chun Wang (Mission Commander): A Maltese entrepreneur of Chinese origin and founder of F2Pool, Wang financed the mission.

Jannicke Mikkelsen (Capsule Commander): A Norwegian cinematographer specializing in extreme environments.

Rabea Rogge (Pilot): A German robotics researcher and the first German woman in space.

Eric Philips (Mission Specialist & Medical Officer): An Australian polar explorer and guide.

All crew members were civilians with backgrounds in exploration and science, emphasizing the mission’s pioneering spirit.

The Fram2 mission conducted 22 experiments focusing on:

Human Physiology: Including the first X-ray of a human in space and studies on blood flow restriction to mitigate muscle and bone loss in microgravity.

Radiation Exposure: Assessing the effects of increased cosmic radiation encountered in polar orbits.

Biological Studies: Attempting to cultivate oyster mushrooms in space as a potential food source.

Atmospheric Phenomena: Observing aurora-like events such as STEVE and green emissions using high-resolution cameras.

Educational Outreach: The “Fram2Ham” amateur radio project connected with students worldwide, promoting STEM education.

Mission Highlights

Historic Polar Orbit: Fram2 was the first crewed mission to achieve a polar orbit, offering unique perspectives of Earth’s poles.

International Collaboration: The diverse crew underscored the global nature of modern space exploration.

Scientific Contributions: The mission’s experiments provided valuable data for future long-duration spaceflights.

Cultural Significance: Artifacts such as a piece of the original Fram ship’s deck and a Stephen Hawking Medal were carried onboard, bridging past and future explorations.

Fram2’s success demonstrates the potential of private missions to contribute meaningfully to space science and exploration. By achieving a polar orbit, the mission opened new avenues for Earth observation and research. The data collected will inform future missions, particularly those targeting long-duration travel to destinations like Mars. Moreover, the mission’s emphasis on international cooperation and educational outreach sets a precedent for inclusive and globally beneficial space endeavors.

Video credit: SpaceX

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 29, 2025

Artemis Lander Motor Study

Posted by

 

 

NASA dicit:

Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently completed a test fire campaign of a 14-inch hybrid rocket motor. The rocket motor ignites using both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust. Data from the test campaign will help teams prepare for future flight conditions when commercial human landing systems, provided by SpaceX and Blue Origin, touch down on the Moon for crewed Artemis missions.

The hybrid motor was test fired 30 times to ensure it will reliably ignite in preparation for testing later this year at NASA’s Langley Research Center in Hampton, Virginia. This video shows the 28th test, conducted in February, during which the 3D-printed motor fired for six seconds.

Video credit: NASA’s Marshall Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
April 28, 2025

Artemis II Rocket Core Stage

Posted by

 

 

NASA dicit:

​Technicians use massive cranes inside the Vehicle Assembly Building at NASA Kennedy’s Space Center in Florida to lift the fully assembled SLS (Space Launch System) core stage vertically 225-feet above the ground from High Bay 2 to a horizontal position in the facility’s transfer aisle. In the transfer aisle, technicians conducted final preparations of the core stage before it was integrated with the completed twin solid rocket booster segments. NASA is implementing a more efficient stacking process to support future missions to the Moon beginning with the Artemis II test flight.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Asteroid (52246) Donaldjohanson is a small but significant body located in the main asteroid belt between Mars and Jupiter. Though it may not have the fame of larger or more compositionally unique asteroids, Donaldjohanson stepped into the scientific spotlight thanks to its pivotal role in NASA’s ambitious Lucy mission — a 12-year journey to explore the Trojan asteroids that share Jupiter’s orbit. Before Lucy reaches its primary Trojan targets, it first encountered Donaldjohanson, making it a key object of study in humanity’s effort to understand the solar system’s early history.

Discovery

Asteroid Donaldjohanson was discovered on March 2, 1981, by astronomer Schelte “Bobby” Bus at the Siding Spring Observatory in Australia. Initially designated 1981 EQ5, the asteroid was later named in honor of Dr. Donald Johanson, the paleoanthropologist best known for co-discovering the fossilized remains of Australopithecus afarensis, famously known as Lucy, in Ethiopia in 1974.

This naming decision was particularly meaningful to NASA, as their Lucy spacecraft, launched in 2021, carries a similar goal: to uncover the fossils of the solar system—namely, the Trojan asteroids, which are thought to be leftover building blocks from planetary formation. Naming the asteroid after Johanson creates a poetic link between the exploration of human origins and the origins of our solar system.

Location and Characteristics

Donaldjohanson resides in the inner region of the main asteroid belt, at a semi-major axis of approximately 2.39 astronomical units (AU) from the Sun. Its orbit is relatively circular and stable, with a low eccentricity and inclination, placing it within the Erigone asteroid family, a large group of stony asteroids in the inner main belt.

Though smaller and less well-studied than some of its larger neighbors, Donaldjohanson’s value lies in its convenience and timing—it is perfectly positioned to serve as a flyby target for the Lucy spacecraft en route to the outer solar system.

The Lucy Mission Flyby

NASA’s Lucy spacecraft has successfully completed a flyby of asteroid Donaldjohanson, providing unprecedented insights into this intriguing celestial body. Lucy performed a close flyby at a distance of approximately 600 miles (960 kilometers), capturing detailed images and data.

The flyby is particularly exciting because very few main belt asteroids have been visited by spacecraft, and each one offers a new data point in understanding the diversity and history of these primitive bodies. By studying Donaldjohanson, Lucy will help bridge the scientific gap between the inner and outer asteroid populations.

During the flyby, Lucy used its three onboard science instruments — L’LORRI (a long-range imager), L’Ralph (a visible and infrared spectrometer), and L’TES (a thermal emission spectrometer) — to examine Donaldjohanson’s surface geology, composition, and thermal properties. In addition to gathering scientific data, the flyby allowed engineers to practice operating the spacecraft’s pointing, tracking, and data-gathering systems ahead of the more complex Trojan encounters.

The flyby revealed that Donaldjohanson is a contact binary asteroid, characterized by two lobes connected by a narrow neck, resembling a peanut or a barbell. This structure suggests a history of two separate bodies gently colliding and merging. The asteroid measures about 8 kilometers in length and 3.5 kilometers at its widest point, larger than previously estimated.

Donaldjohanson’s surface exhibits a complex geology with varying crater densities between its lobes, indicating a diverse collisional history. These observations provide valuable data on the processes that shaped such bodies and, by extension, the early solar system. The successful flyby serves as a critical rehearsal for Lucy’s upcoming encounters with Trojan asteroids near Jupiter, scheduled between 2027 and 2033.

Looking Ahead

While Donaldjohanson is not the primary target of Lucy’s mission, the asteroid plays an essential role in validating the mission’s capabilities and providing early science returns. Its proximity and well-known orbit make it an ideal testbed. Moreover, the data collected during the flyby will contribute to our broader understanding of asteroid families, space weathering, and solar system evolution.

After the 2025 encounter, Lucy will go on to visit eight Trojan asteroids, including Eurybates, Polymele, Leucus, Orus, and the binary pair Patroclus and Menoetius. These objects are expected to reveal new insights into the formation of the gas giants and the migration of planets during the early stages of solar system development.

In this grand journey, asteroid Donaldjohanson acts as the first stepping stone—a humble but crucial waypoint on the path to uncovering our solar system’s ancient past. As such, it not only honors the legacy of scientific discovery associated with its namesake but also propels forward the exploration of space’s most enduring mysteries.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis