“Outside the International Space Station, Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of the European Space Agency conducted a spacewalk in U.S. spacesuits to upgrade the system for the 1A power channel of the orbital laboratory’s starboard 4 (S4) truss solar arrays. Moving adapter plates and batteries, Kimbrough completed the work to hook up electrical connections for the last three of six new lithium-ion batteries recently delivered to the station, and to move the last of the old nickel-hydrogen batteries that will be stored on the station. It was the second spacewalk in a week for Kimbrough and the fourth of his career, and the first for Pesquet in the refurbishment of two of the station’s eight power channels. On Jan. 6, Kimbrough and Flight Engineer Peggy Whitson of NASA conducted similar work for the 3A power channel of the station’s S4 solar arrays.”
“On the International Space Station, Expedition 50 Commander Shane Kimbrough and Flight Engineer Peggy Whitson of NASA floated outside the Quest airlock for a spacewalk to complete half of the work involved to swap out nickel-hydrogen batteries on the station’s truss with new lithium-ion batteries. Kimbrough and Whitson installed adapter plates on the truss and hooked up electrical cables as part of a complex robotics and spacewalk plan to shore up the station’s power supply for the future. It was the third spacewalk of Kimbrough’s career and the seventh for Whitson, who equaled the mark for most spacewalks by a woman previously set by NASA’s Suni Williams. Kimbrough will venture outside the station again on Jan. 13 with Flight Engineer Thomas Pesquet of ESA (European Space Agency) to continue and complete the battery work.”
“The Hubble Space Telescope (HST) is a space telescope that was launched into low Earth orbit in 1990, and remains in operation. Although not the first space telescope, Hubble is one of the largest and most versatile, and is well known as both a vital research tool and a public relations boon for astronomy. The HST is named after the astronomer Edwin Hubble, and is one of NASA’s Great Observatories, along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope.
With a 2.4-meter (7.9 ft) mirror, Hubble’s four main instruments observe in the near ultraviolet, visible, and near infrared spectra. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to take extremely high-resolution images, with substantially lower background light than ground-based telescopes. Hubble has recorded some of the most detailed visible light images ever, allowing a deep view into space and time. Many Hubble observations have led to breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe.
The HST was built by the United States space agency NASA, with contributions from the European Space Agency. The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the Goddard Space Flight Center controls the spacecraft.
Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s, with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the Challenger disaster (1986). When finally launched in 1990, Hubble’s main mirror was found to have been ground incorrectly, compromising the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.
Hubble is the only telescope designed to be serviced in space by astronauts. After launch by Space Shuttle Discovery in 1990, four subsequent Space Shuttle missions repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. A fifth mission was canceled on safety grounds following the Columbia disaster (2003). However, after spirited public discussion, NASA administrator Mike Griffin approved one final servicing mission, completed in 2009. The telescope is operating as of 2016, and could last until 2030–2040. Its scientific successor, the James Webb Space Telescope (JWST), is scheduled for launch in 2018.”
“The lunar phase or phase of the moon is the shape of the illuminated (sunlit) portion of the Moon as seen by an observer on Earth. The lunar phases change cyclically as the Moon orbits the Earth, according to the changing positions of the Moon and Sun relative to the Earth. The Moon’s rotation is tidally locked by the Earth’s gravity, therefore the same lunar surface always faces Earth. This face is variously sunlit depending on the position of the Moon in its orbit. Therefore, the portion of this hemisphere that is visible to an observer on Earth can vary from about 100% (full moon) to 0% (new moon). The lunar terminator is the boundary between the illuminated and darkened hemispheres. Each of the four “intermediate” lunar phases is roughly seven days (~7.4 days) but this varies slightly due to the elliptical shape of the Moon’s orbit. Aside from some craters near the lunar poles such as Shoemaker, all parts of the Moon see around 14.77 days of sunlight, followed by 14.77 days of “night”.”
“ExoMars (Exobiology on Mars) is a two-part Martian astrobiology project to search for evidence of life on Mars, a joint mission of the European Space Agency (ESA) and the Russian space agency Roscosmos. The first part, launched in 2016, placed a trace gas research and communication satellite into Mars orbit and released a stationary experimental lander (which crashed). The second part is planned to launch in 2020, and to land a rover on the surface, supporting a science mission that is expected to last into 2022 or beyond.
ExoMars goals are to search for signs of past and present life on Mars, investigate how the Martian water and geochemical environment varies, investigate atmospheric trace gases and their sources and by doing so demonstrate the technologies for a future Mars sample return mission. The mission will search for biosignatures of Martian life, past or present, employing several spacecraft elements to be sent to Mars on two launches.
The ExoMars Trace Gas Orbiter (TGO) and a test stationary lander called Schiaparelli were launched on 14 March 2016. TGO entered Mars orbit on 19 October 2016 and will proceed to map the sources of methane (CH4) and other trace gases present in the Martian atmosphere that could be evidence for possible biological or geological activity. The Schiaparelli experimental lander separated from TGO on 16 October and was maneuvered to land in Meridiani Planum. As of 19 October 2016, ESA had not received a signal that the landing was successful. On 21 October 2016, NASA released a Mars Reconnaissance Orbiter image showing what appears to be the lander crash site. The landing was designed to test new key technologies to safely deliver the 2020 rover mission. The TGO features four instruments and will also act as a communications relay satellite.
In 2020, a Roscosmos-built lander (ExoMars 2020 surface platform) is to deliver the ESA-built ExoMars Rover to the Martian surface. The rover will also include some Roscosmos built instruments. The second mission operations and communications will be led by ALTEC’s Rover Control Centre in Italy.”
“Mawrth Vallis (Mawrth means “Mars” in Welsh) is a valley on Mars in the Oxia Palus quadrangle at 22.3°N, 343.5°E with an elevation approximately two kilometers below datum. It is an ancient water outflow channel with light-colored clay-rich rocks. Mawrth Vallis is one of the oldest valleys on Mars. It was formed in and subsequently covered by layered rocks, from beneath which it is now being exhumed.
The Mawrth Vallis region holds special interest because of the presence of phyllosilicate (clay) minerals which form only if water is available, first identified in data from the OMEGA spectrometer on the European Space Agency’s Mars Express orbiter. Mars Reconnaissance Orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars has identified aluminium-rich and iron-rich clays, each with a unique distribution. Some of the clays recently discovered by the Mars Reconnaissance Orbiter are montmorillonite and kaolinite, and nontronite. Since some clays seem to drape over high and low areas, it is possible that volcanic ash landed in an open body of water. On Earth such clays occur in (among other environments) weathered volcanic rocks and hydrothermal systems, where volcanic activity and water interact. Mawrth Vallis was at one point considered as a landing site for the Mars Science Laboratory, which ultimately landed at Gale Crater. Clay minerals easily preserve microscopic life on Earth, so perhaps traces of ancient life may be found at Mawrth. It is considered a potential landing site for the Mars 2020 rover.”