Wikipedia dicit:
The three major components of the Mars 2020 spacecraft are the 539 kg (1,188 lb) cruise stage for travel between Earth and Mars; the Entry, Descent, and Landing System (EDLS) that includes the 575 kg (1,268 lb) aeroshell descent vehicle + 440 kg (970 lb) heat shield; and the 1,070 kg (2,360 lb) (fueled mass) sky crane needed to deliver Perseverance and Ingenuity safely to the Martian surface. The Sky Crane carries 400 kg (880 lb) landing propellant for the final soft landing burn after being slowed down by a 21.5 m (71 ft) wide 81 kg (179 lb) parachute. The 1,025 kg (2,260 lb) rover is based on the design of Curiosity. While there are differences in scientific instruments and the engineering required to support them, the entire landing system (including the sky crane and heat shield) and rover chassis could essentially be recreated without any additional engineering or research. This reduces overall technical risk for the mission, while saving funds and time on development.
One of the upgrades is a guidance and control technique called “Terrain Relative Navigation” (TRN) to fine-tune steering in the final moments of landing. This system will allow for a landing accuracy within 40 m (130 ft) and avoid obstacles. This is a marked improvement from the Mars Science Laboratory mission that had an elliptical area of 7 by 20 km (4.3 by 12.4 mi). In October 2016, NASA reported using the Xombie rocket to test the Lander Vision System (LVS), as part of the Autonomous Descent and Ascent Powered-flight Testbed (ADAPT) experimental technologies, for the Mars 2020 mission landing, meant to increase the landing accuracy and avoid obstacle hazards.
Video credit: Aerojet Rocketdyne