Wikipedia dicit:
An electrically-powered spacecraft propulsion system uses electrical, and possibly also magnetic fields, to change the velocity of a spacecraft. Most of these kinds of spacecraft propulsion systems work by electrically expelling propellant (reaction mass) at high speed.
Electric thrusters typically use much less propellant than chemical rockets because they have a higher exhaust speed (operate at a higher specific impulse) than chemical rockets. Due to limited electric power the thrust is much weaker compared to chemical rockets, but electric propulsion can provide a small thrust for a long duration of time. Electric propulsion can achieve high speeds over long periods and thus can work better than chemical rockets for some deep space missions.
Electric propulsion is now a mature and widely used technology on spacecraft. Russian satellites have used electric propulsion for decades and it is predicted that by 2020, half of all new satellites will carry full electric propulsion. As of 2019, over 500 spacecraft operated throughout the Solar System use electric propulsion for station keeping, orbit raising, or primary propulsion. In the future, the most advanced electric thrusters may be able to impart a Delta-v of 100 km/s, which is enough to take a spacecraft to the outer planets of the Solar System (with nuclear power), but is insufficient for interstellar travel. An electric rocket with an external power source (transmissible through laser on the photovoltaic panels) has a theoretical possibility for interstellar flight. However, electric propulsion is not a method suitable for launches from the Earth’s surface, as the thrust for such systems is too weak.
Video credit: Aerojet Rocketdyne