OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for July, 2018

July 13, 2018

Moondive Study

Posted by

 

 

ESA dixit:

“One of the deepest ‘swimming pools’ in Europe, for three years has been helping preparations for a human return to the Moon. ESA’s Neutral Buoyancy Facility at the European Astronaut Centre has been the site of the ‘Moondive’ study, using specially weighted spacesuits to simulate lunar gravity, which is just one sixth that of Earth.

The three-year study took place in the Centre’s 10-m deep Neutral Buoyancy Facility (NBF) near Cologne in Germany. This is one of four such immersion tanks worldwide – the others are in the United States, China and Russia – and is used to train astronauts for ‘extra vehicular activity’ (EVA), also known as spacewalks.

With International Space Station operations moving towards an international lunar return in the late 2020s, ESA’s NBF has been used to investigate moonwalk procedures for the lunar surface.

Moondive was run by a consortium led by the French company, COMEX, which specialises in human and robotic exploration of extreme environments. Footage is also seen from precursor project Moonwalk, including simulated EVAs off the coast of Marseilles, funded by the European Commission’s Seventh Framework Programme.”

Credits Video: ESA/COMEX/EC FP7 Moonwalk project

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 12, 2018

Hyades

Posted by

 

 

ESA dixit:

“This is an animated 3D view of the sky as observed by ESA’s Gaia satellite using information from the mission’s second data release. The bright band in the left half of the image is the Milky Way, where most of the stars in our Galaxy reside. The animation starts with the Orion constellation at the centre; we then move towards the neighbouring Taurus constellation and to the Hyades star cluster, which is part of this constellation. Hyades is the closest open cluster to the Solar System, some 150 light-years away.

The animation first shows the 3D structure of the cluster, based on accurate position and distance information from Gaia. Then an animated view of the future motions of stars is shown – both in Hyades and beyond. This is based on Gaia’s measurements of the velocity of stars across the sky, also known as proper motion.”

Credits Video: ESA/Gaia/DPAC, CC BY SA 3.0 IGO/Gaia Data Processing and Analysis Consortium (DPAC); Gaia Sky; S. Jordan / T. Sagristà, Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 11, 2018

Eta Carinae

Posted by

 

 

NASA dixit:

“A new study using data from NASA’s NuSTAR space telescope suggests that the most luminous and massive stellar system within 10,000 light-years, Eta Carinae, is accelerating particles to high energies — some of which may reach Earth as cosmic rays. Cosmic rays with energies greater than 1 billion electron volts (eV) come to us from beyond our solar system. But because these particles — electrons, protons and atomic nuclei — all carry an electrical charge, they veer off course whenever they encounter magnetic fields. This scrambles their paths and masks their origins. Eta Carinae, located about 7,500 light-years away in the southern constellation of Carina, contains a pair of massive stars whose eccentric orbits bring them unusually close every 5.5 years. The stars contain 90 and 30 times the mass of our Sun.

Both stars drive powerful outflows called stellar winds, which emit low-energy X-rays where they collide. NASA’s Fermi Gamma-ray Space Telescope observes gamma rays — light packing far more energy than X-rays — from a source in the direction of Eta Carinae. But Fermi’s vision isn’t as sharp as X-ray telescopes, so astronomers couldn’t confirm the connection. To bridge this gap, astronomers turned to NASA’s NuSTAR observatory. Launched in 2012, NuSTAR can focus X-rays of much greater energy than any previous telescope.

The team examined NuSTAR observations acquired between March 2014 and June 2016, along with lower-energy X-ray observations from the European Space Agency’s XMM-Newton satellite over the same period. NuSTAR detects a source emitting X-rays above 30,000 eV, some three times higher than can be explained by shock waves in the colliding winds. For comparison, the energy of visible light ranges from about 2 to 3 eV.

The researchers say both the X-ray emission seen by NuSTAR and the gamma-ray emission seen by Fermi is best explained by electrons accelerated in shock waves where the winds collide. The X-rays detected by NuSTAR and the gamma rays detected by Fermi arise from starlight given a huge energy boost by interactions with these electrons. Some of the superfast electrons, as well as other accelerated particles, must escape the system and perhaps some eventually wander to Earth, where they may be detected as cosmic rays. Zoom into Eta Carinae, where the outflows of two massive stars collide and shoot accelerated particles cosmic rays into space.”

Credits Music: “Expectant Aspect” from Killer Tracks

Credits Video: NASA’s Goddard Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 10, 2018

Near-Earth Asteroids

Posted by

 

 

Wikipedia dixit:

“Near-Earth asteroids are objects in a near-Earth orbit without the tail or coma of a comet. NEAs survive in their orbits for just a few million years. They are eventually eliminated by planetary perturbations, causing ejection from the Solar System or a collision with the Sun or a planet. With orbital lifetimes short compared to the age of the Solar System, new asteroids must be constantly moved into near-Earth orbits to explain the observed asteroids. The accepted origin of these asteroids is that main-belt asteroids are moved into the inner Solar System through orbital resonances with Jupiter. The interaction with Jupiter through the resonance perturbs the asteroid’s orbit and it comes into the inner Solar System. The asteroid belt has gaps, known as Kirkwood gaps, where these resonances occur as the asteroids in these resonances have been moved onto other orbits. New asteroids migrate into these resonances, due to the Yarkovsky effect that provides a continuing supply of near-Earth asteroids. Compared to the entire mass of the asteroid belt, the mass loss necessary to sustain the NEA population is relatively small; totalling less than 6% over the past 3.5 billion years. The composition of near-Earth asteroids is comparable to that of asteroids from the asteroid belt, reflecting a variety of asteroid spectral types.

A small number of NEAs are extinct comets that have lost their volatile surface materials, although having a faint or intermittent comet-like tail does not necessarily result in a classification as a near-Earth comet, making the boundaries somewhat fuzzy. The rest of the near-Earth asteroids are driven out of the asteroid belt by gravitational interactions with Jupiter.

Many asteroids have natural satellites (minor-planet moons). As of March 15, 2017, 66 NEAs were known to have at least one moon, including three known to have two moons. The asteroid 3122 Florence, one of the largest PHAs with a diameter of 4.5 km (2.8 mi), has two moons measuring 100–300 m (330–980 ft) across, which were discovered by radar imaging during the asteroid’s 2017 approach to Earth.”

Credits Video: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 9, 2018

JWST Launch and Deployment

Posted by

 

 

Wikipedia dixit:

“The James Webb Space Telescope (JWST) is a space telescope developed in collaboration between NASA, the European Space Agency, and the Canadian Space Agency that will be the scientific successor to the Hubble Space Telescope. The JWST will offer unprecedented resolution and sensitivity, and will enable a broad range of investigations across the fields of astronomy and cosmology. One of its major goals is observing some of the most distant events and objects in the universe, such as the formation of the first galaxies. These types of targets are beyond the reach of current ground and space-based instruments. Other goals include understanding the formation of stars and planets, and direct imaging of exoplanets and novas.

The JWST’s primary mirror is composed of 18 hexagonal mirror segments made of gold-coated beryllium that combine to create a mirror with a diameter of 6.5 meters (21 ft 4 in) – a large increase over the Hubble’s 2.4-meter (7.9 ft) mirror. The telescope will be deployed in space near the Earth–Sun L2 Lagrangian point, and a large sunshield made of five sheets of silicon- and aluminum-coated Kapton will keep JWST’s mirror and four science instruments below 50 K (−220 °C; −370 °F). Unlike the Hubble—which observes in the near ultraviolet, visible, and near infrared spectra—the JWST will observe in the long-wavelength (orange to red) visible light through the mid-infrared (0.6 to 27 μm) range. This will allow the JWST to observe high redshift objects that are too old and too distant for the Hubble and other earlier instruments to observe.

In development since 1996, the telescope is named after James E. Webb, the American government official who was the administrator of NASA from 1961 to 1968 and played an integral role in the Apollo program. The project has had numerous delays and cost overruns, and underwent a major redesign during 2005. In December 2016, NASA announced that construction of the JWST was complete and that its extensive testing phase would begin. In March 2018, NASA delayed the JWST’s launch an additional year after the telescope’s sunshield ripped during a practice deployment and the sunshield’s cables did not sufficiently tighten. It was further delayed on June 27, 2018 based on recommendations by an Independent Review Board. The JWST is scheduled to launch on March 30, 2021.”

Credits Video: NASA/Northrop Grumman

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 6, 2018

James Webb Space Telescope

Posted by

 

 

Wikipedia dixit:

“The James Webb Space Telescope (JWST) is a space telescope developed in collaboration between NASA, the European Space Agency, and the Canadian Space Agency that will be the scientific successor to the Hubble Space Telescope. The JWST will offer unprecedented resolution and sensitivity, and will enable a broad range of investigations across the fields of astronomy and cosmology. One of its major goals is observing some of the most distant events and objects in the universe, such as the formation of the first galaxies. These types of targets are beyond the reach of current ground and space-based instruments. Other goals include understanding the formation of stars and planets, and direct imaging of exoplanets and novas.

The JWST’s primary mirror is composed of 18 hexagonal mirror segments made of gold-coated beryllium that combine to create a mirror with a diameter of 6.5 meters (21 ft 4 in) – a large increase over the Hubble’s 2.4-meter (7.9 ft) mirror. The telescope will be deployed in space near the Earth–Sun L2 Lagrangian point, and a large sunshield made of five sheets of silicon- and aluminum-coated Kapton will keep JWST’s mirror and four science instruments below 50 K (−220 °C; −370 °F). Unlike the Hubble—which observes in the near ultraviolet, visible, and near infrared spectra—the JWST will observe in the long-wavelength (orange to red) visible light through the mid-infrared (0.6 to 27 μm) range. This will allow the JWST to observe high redshift objects that are too old and too distant for the Hubble and other earlier instruments to observe.

In development since 1996, the telescope is named after James E. Webb, the American government official who was the administrator of NASA from 1961 to 1968 and played an integral role in the Apollo program. The project has had numerous delays and cost overruns, and underwent a major redesign during 2005. In December 2016, NASA announced that construction of the JWST was complete and that its extensive testing phase would begin. In March 2018, NASA delayed the JWST’s launch an additional year after the telescope’s sunshield ripped during a practice deployment and the sunshield’s cables did not sufficiently tighten. It was further delayed on June 27, 2018 based on recommendations by an Independent Review Board. The JWST is scheduled to launch on March 30, 2021.”

Credits Music: Expanding Time and Space by Daniel jay Nielsen

Credits Video: NASA’s Goddard Space Flight Center/Sophia Roberts

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis