OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for October, 2016

October 30, 2016

Expedition 49 Departs from the ISS

Posted by

 



 

 

NASA dixit:

“After saying farewell to the crew staying on the International Space Station and climbing into their Soyuz spacecraft on October 29, Expedition 49 Commander Anatoly Ivanishin of Roscosmos and Flight Engineers Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency, undocked from the orbital outpost, to begin their return trip to Earth. Ivanishin, Rubins and Onishi spent 115 days in space and 113 days aboard the orbital laboratory.”

Video credit: NASA/Roscosmos

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 24, 2016

Cygnus Arrives at the Space Station

Posted by

 



 

 

NASA dixit:

“Loaded with more than 2.5 tons of supplies and science experiments, Orbital ATK’s Cygnus cargo craft arrived at the International Space Station Oct. 23 following its launch on a refurbished Antares rocket from the Wallops Flight Facility, Virginia Oct. 17. Expedition 49 crewmembers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA captured Cygnus using the station’s Canadian-built robotic arm. Ground controllers then maneuvered Cygnus to the Earth-facing port of the Unity module where it was installed and bolted into place for a month-long stay.”

From CASIS press release:

“The most recent series of payloads berthed with the International Space Station (ISS) Sunday morning onboard the Orbital ATK Cygnus capsule. Many of the investigations launched from Wallops Island, VA onboard the Antares rocket are sponsored by the ISS U.S. National Laboratory. The Center for the Advancement of Science in Space (CASIS) is tasked by NASA with managing and promoting research onboard the ISS National Laboratory for the benefit of Earth. Below provides a summary of the ISS National Laboratory-sponsored payloads delivered today:

CONTROLLED DYNAMICS LOCKER FOR MICROGRAVITY EXPERIMENTS ON ISS

Controlled Dynamics

Principal Investigator: Dr. Scott Green

Dr. Green and his team have developed a hardware platform that will provide research payloads with a “controlled dynamic acceleration environment”—in other words, a technology that will dampen fluctuations/disturbances in the microgravity environment that occur onboard moving spacecraft. This technology promises to attract a new class of research experiments and private funding aimed at exploiting this controlled acceleration environment in microgravity, which has the potential to improve space experiments in crystallization; fluid physics; cell, tissue, and plant culturing; and other studies that require precise control of motion. This investigation stems from a CASIS grant supporting enabling technology development onboard the ISS National Lab.

NANORACKS BLACK BOX

NanoRacks, LLC

Principal Investigator: Mary Murphy

NanoRacks Black Box is a key part of NanoRacks’ next-generation ISS platforms. This new hardware is specially designed to provide near-launch payload turnover of autonomous payloads while providing advanced science capabilities for customers, including the use of robotics, new automated MixStix, and NanoLab-style research. OA-5 provides the first technology demonstration mission to test the NanoRacks Black Box platform, NanoRacks’ own payload hardware, and customer technology demonstration experiments. Technology demonstration payloads onboard OA-5 include multiple education-focused experiments, one of which features a partnership between Valley Christian High School in California and Microsoft, in which students will leverage the Microsoft Windows 10 IoT (internet of things) platform to run experiments on a cell phone motor to test the behaviors of different metals and materials in microgravity environments with status and magnetic forces.

NANORACKS EXTERNAL DEPLOYER

NanoRacks, LLC

Principal Investigators: Conor Brown and Henry Martin

NanoRacks provides opportunities for CubeSat deployment from Cygnus after the vehicle departs from the ISS. The NanoRacks deployer is installed on the exterior of the Cygnus service module, and after completion of its primary ISS resupply mission, Cygnus is intended to move into a higher orbit, and then deploy small satellites. Four satellites are part of the OA-5 mission intended to launch from Cygnus in partnership with the space-based data company, Spire. Spire’s solutions offer organizations near-real-time insights into weather and climate, shipping and supply chain, and maritime domain awareness. Ships carry 90% of global trade over the oceans, but the ships and those that rely on them are open to risks caused by delays, piracy, poor data for search and rescue operations, and incomplete data sets. The ship tracking payload reduces those risks by relaying critical metadata about oceangoing vessels to a network of ground stations. The weather observation payload gathers incredibly accurate temperature, pressure, and humidity data by recording and processing signals from GPS satellites as they “bend” through the Earth’s atmosphere. The data is fed into weather models, where it provides large improvements to short- and medium-term forecasts. This mission will incrementally increase Spire’s satellite constellation, providing additional coverage from a mid-inclination orbit.

SOLIDIFICATION USING A BAFFLE IN SEALED AMPOULES (SUBSA) FURNACE

NASA Marshall Space Flight Center

Material melt-growth experiments have been difficult to run in the space environment because there is just enough residual micro-acceleration (g-jitter) to produce natural convection that interferes with the structure and purity of the material. This convection is responsible for the lack of reliable and reproducible solidification data and, thus, for gaps in solidification theory. The Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment tested an automatically moving baffle (driven by melt expansion during freezing) that was designed to reduce thermal convection inside an ampoule to determine whether the baffle significantly reduces convection. Ground studies showed that the baffle reduces the movement of the material during its liquid phase, making the process easier to analyze and allowing more homogenous crystals to form. The key goal of SUBSA was to clarify the origin of the melt convection in space and to reduce the magnitude to the point that it does not interfere with the transport phenomena. This mission will provide updates to the hardware onboard the ISS to include modifications to the furnace and inserts to ensure future investigations run nominally.”

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 13, 2016

Hurricane Nicole over Bermuda

Posted by

 

 

Wikipedia dixit:

“Hurricane Nicole is currently a strong tropical cyclone moving away from the British Overseas Territory of Bermuda. It is the first major hurricane to directly impact or make landfall on the island since Hurricane Fabian in 2003. The fourteenth named storm, sixth hurricane and third major hurricane of the active 2016 Atlantic hurricane season, Nicole formed in the central Atlantic on October 4. The small, slow-moving storm defied forecasts by steadily organizing in spite of strong wind shear, and it rapidly intensified to a Category 2 hurricane on October 7. The wind shear finally took its toll by October 8, reducing Nicole to a weak tropical storm, but more favorable conditions allowed the cyclone to reintensify into a hurricane a couple days later. The storm’s approach to Bermuda forced schools, businesses, and government offices to close, while flight, bus, and ferry services were interrupted. On October 13, the eye of Category 3 Hurricane Nicole passed over Bermuda, producing damaging winds.”

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 2, 2016

Rosetta’s Final Path

Posted by

 



 

 

Wikipedia dixit:

“Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft flew by Mars and the asteroids 21 Lutetia and 2867 Ĺ teins.

On 6 August 2014, the spacecraft reached the comet and performed a series of manoeuvres to be captured in its orbit. On 12 November, the lander module performed the first successful landing on a comet, though its battery power ran out two days later. Communications with Philae were briefly restored in June and July 2015, but due to diminishing solar power, Rosetta’s communications module with the lander was turned off on 27 July 2016. On 30 September 2016, the Rosetta spacecraft ended its mission by landing on the comet in its Ma’at region.

The probe is named after the Rosetta Stone, a stele of Egyptian origin featuring a decree in three scripts. The lander is named after the Philae obelisk, which bears a bilingual Greek and Egyptian hieroglyphic inscription. A comparison of its hieroglyphs with those on the Rosetta Stone catalysed the deciphering of the Egyptian writing system. Similarly, it is hoped that these spacecraft will result in better understanding of comets and the early Solar System. In a more direct analogy to its namesake, the Rosetta spacecraft also carries a micro-etched nickel alloy Rosetta disc donated by the Long Now Foundation inscribed with 13,000 pages of text in 1,200 languages.”

Video credit: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis