OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for January, 2011

January 29, 2011

MSCI Announces Satellite Constellation

Posted by
Credits: MSCI

 

The COMMStellation satellites will orbit the Earth on polar orbits 1,000 km above the surface of the Earth. The satellites will be deployed in six orbital planes, thirteen operational satellites per plane, plus one for redundancy. The deployment will be cost efficient, only six launches being required to deploy the whole constellation.

 

As oppose to Iridium, which is accessible from portable devices, the COMMStellation will be connected to terrestrial telecommunication networks through twenty ground stations located around the Earth. The required ground stations are less expensive than those used for communication with satellites on medium Earth orbits and geostationary orbits.

 

MSCI claims it has perfected the construction of microsatellites and the use of commercial-grade components for development of microsatellites. These factors have led to low manufacturing costs and improved schedules.

 

An alternative to COMMStellation is proposed by O3b Networks, located in St. John, Jersey, Channel Islands. The O3b Networks constellation satellites will provide broadband connectivity within forty-five degrees latitude north and south of the equator. The constellation will consist of eight satellites at 8,000 km above the surface of the Earth. There are a number of advantages in using the low Earth orbit polar microsatellites, as MSCI is proposing, over using equatorial medium Earth orbit satellites: the polar orbits provide full coverage of the terrestrial surface and microsatellite technology has less cost and increased reliability associated with it.

 

It is also worth mentioning a previous attempt at creating a constellation of low Earth orbit satellites to provide access to the Internet – Teledesic.

 

You can read more about COMMStellation on MSCI’s website.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 22, 2011

Launch of KOUNOTORI2/H-IIB F2

Posted by

 

 

On January 22, 2011, the H-IIB F2 launch vehicle lifted off from the Tanegashima Space Center with HTV2, the Japanese cargo spacecraft to the International Space Station.

Read more about the International Space Station…

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 21, 2011

Zenit-2SB Launch with Electro-L

Posted by

 

 

On January 20, 2011, a Zenit-2SB/Fregat-SB launch vehicle lifted off from the Baikonur Cosmodrome with Electro-L. Electro-L is a Russian Earth-science satellite.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

Credits: NASA

 

 

Space debris, also known as orbital debris, consist of artificial objects in orbit around Earth that no longer serve any useful purpose.

 

Most of the space debris population consists of fragments resulted from explosions and collisions, but some are spent rocket stages and satellites that are no longer operational. Fragmentations occur during a satellite breakup or an anomalous event.

 

 

A satellite breakup is a destructive disassociation of a payload, rocket body, or structure. Most of the time, breakups generate ejecta with a wide range of velocities, and this affects the evolution of the particle cloud following the breakup. As the ejected particles spread out from the point of breakup with different initial conditions, some of them may remain well correlated for a long time, while others may disperse into dissimilar orbits. Satellite breakups are accidental, but there are exceptions when they are deliberate, as in the case of a space weapon test. An anomalous event is the unplanned separation of one or more detectable objects from the satellite. These separations happen at low velocities and the satellite remains intact. As an example, the separation caused by the deterioration of a thermal blanket or a protective shield is classified as an anomalous event. Clearly, a satellite breakup generates more debris than an anomalous event.

 

As the space debris are associated with spacecraft launches, the highest densities are found on the most popular altitudes and inclinations. While the altitudes are characteristic to mission types, the orbital inclinations correspond to the latitudes of the current launching facilities.
There are numerous characterizations of the space debris environment. A common method used for describing it is the spatial density of resident space objects, which is a representation of the effective number of spacecraft and other objects as a function of altitude. On such a representation there are several high-density regions that are evident: near 890 km due to Fengyun-1C event, around 780 km where the Iridium constellation of satellites resides, and the region around 1,400 km, inhabited by the GLOBALSTAR constellation. There are certain differences in the distribution in the low Earth orbit region (altitudes of 160-2,000 km) and the distribution in the geosynchronous orbit region (altitudes of 35,000 km). These are caused by the fact that high inclination orbits, characteristic to the LEO region, yield a greater collision rate because objects in these high inclination orbits can collide in the overlapping regions with other objects on complementary orbits, and also the GEO environment is characterized by lower collision velocities.

 

Another method of characterization is the population distribution by object type (e.g. spacecraft, rocket stage) and by source (e.g. United States, People’s Republic of China). For example, on August 1st, 2007, the U.S. Satellite Catalog presented the following Source vs. Type statistic for on-orbit objects.

Source vs. Type Accounting (on-orbit objects) / 1 August 2007 U.S. Satellite Catalog

  US CIS France PRC India Japan ESA Other Total
Payloads 1,063 1,324 44 61 33 103 36 387 3,051
Rocket bodies 542 837 97 37 8 35 6 27 1,589
Mission related debris 779 507 92 62 1 36 12 5 1,494
Breakup debris 1,666 1,524 126 2,315 97 2 18 35 5,783
Anomalous debris 144 82 3 0 0 0 0 0 229
Totals 4,194 4,274 362 2,475 139 176 72 454 12,146

It is interesting to see that debris is dominant among all sources, and they are mostly due to space activities of the United States, Commonwealth of Independent States, and People’s Republic of China.

 

Two major collision events in Earth’s orbit are mentioned in the scientific literature: the Chinese Fengyun-1C anti-satellite (ASAT) test in 2007, and the first accidental collision between two large intact satellites, Iridium 33 and Cosmos 2251, in 2009.

 

Fengyun-1C, a box shaped satellite weighing 950 kg, was launched in May 1999. The satellite was intercepted and destroyed at an altitude of 860 km on January 11, 2007, by a kinetic kill vehicle at a relative speed of approximately 12 km/s. The debris cloud formed as a result of the Chinese ASAT test represents the worst contamination of low Earth orbit in history. It was estimated that the impact generated more than 2,300 trackable objects, and more than 1,000,000 objects 1 mm in diameter or larger. More than half of the fragments created during the impact and identified by ground measurements have present orbits exceeding a mean altitude of 850 km, which means that they will be part of the debris population for decades. As a result of this test, an increase of the population of 69% has been observed. The Fengyun-1C ASAT test was not a first, though. The first artificial satellite used as a target in an ASAT test was Solwind (P78-1), a scientific spacecraft used for coronal research. Launched in February 1999, the P78-1 was experiencing automatic shutdown of the scientific payload due to degradation of the power systems, and it was destroyed by an ASM-135 ASAT suborbital rocket on September 13, 1985.

 

It is important to mention the details of the collision between the Iridium 33 and the Cosmos 2251 satellites. The event got a lot of media coverage and it seems that it was the catalyst of a number of new initiatives related to the space debris environment in the space industry. Iridium 33 was an operational communication satellite, one of the Iridium Constellation satellites. Cosmos 2251 was a Russian communication satellite, retired at the time of time of the collision. This was the first major collision of two satellites in Earth orbit.

 

From May 2003 to August 2007, there are twenty-one on-orbit fragmentations and seven anomalous events recorded. The historical total, recorded starting in October 1957, is 194 fragmentations and fifty-one anomalous events.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 14, 2011

Sustainability in LEO: A Short History

Posted by

 

Credits: NASA

 

 

The adventure started on October 4, 1957, when the former Soviet Union successfully launched the first artificial satellite, Sputnik-1, using a rocket that was a modified Intercontinental Ballistic Missile (ICMB). Even if the political implications at that time were very important, as the launch ignited the Space Race within the Cold War, we can argue that the scientific accomplishments were more significant.

 

These accomplishments relied upon the theoretical work of scientists like Hermann Oberth and Konstantin Tsiolkovsky.

 

What followed this event, as mentioned above, was a race.

 

 

Explorer-1, the first American artificial satellite, was launched on January 31, 1958. Yuri Gagarin was the first human in outer space and the first to orbit the Earth on April 21, 1961. He was followed closely by Alan Shepard, who became the first American to travel into space onboard the Freedom-7 capsule, on May 5, 1961.

 

On August 19, 1964, the first geostationary communication satellite, Syncomm-3, was placed in orbit over the International Date Line. Syncomm-3 was used to relay the television coverage of the 1964 Summer Olympics in Tokyo, Japan, to the United States. The first to propose the concept of a communication satellite was Arthur C. Clarke, who in October 1945 published an article in the British magazine Wireless World that described the fundamental concepts behind the development of artificial satellites used to relay radio signals.

 

The first space station, Salyut-1, was launched on April 19, 1971. Even if the space station had a short operational life, as it re-entered the Earth atmosphere on October 11, 1971, it tested elements of the systems required on a space station and conducted scientific research and experiments. The construction of the first international research facility in Earth orbit, the International Space Station (ISS), began in 1998. The station is still under construction and it will be operational until at least 2015.

 

Where are we now, after 53 years of exploration of the space in the proximity of Earth? Since the launch of Sputnik on October 4, 1957, some 4,600 launches have orbited more than 6,000 satellites. All of these activities have created a cloud of orbiting particles around Earth. This new environment is referred to as space debris or orbital debris. Even if most of these particles are small in size (less than 1 cm), they are a source of great concern as the kinetic energies associated with impacts at orbital velocities, which are in the range 8-10 km/s or 28,800-36,000 km/h, are very high. It has been estimated that the total mass in orbit is 5,800 tons.

 

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis