OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Videos category

August 28, 2019

RS-25 Engine Test

Posted by

 

 

Wikipedia dicit:

The Aerojet Rocketdyne RS-25, otherwise known as the Space Shuttle main engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA’s Space Shuttle. NASA is planning to continue using the RS-25 on the Space Shuttle’s successor, the Space Launch System (SLS).

Designed and manufactured in the United States by Rocketdyne (later known as Pratt & Whitney Rocketdyne and Aerojet Rocketdyne), the RS-25 burns cryogenic liquid hydrogen and liquid oxygen propellants, with each engine producing 1,859 kN (418,000 lbf) of thrust at liftoff. Although the RS-25 can trace its heritage back to the 1960s, concerted development of the engine began in the 1970s, with the first flight, STS-1, occurring on April 12, 1981. The RS-25 has undergone several upgrades over its operational history to improve the engine’s reliability, safety, and maintenance load.

The engine produces a specific impulse (Isp) of 452 seconds (4.43 km/s) in a vacuum, or 366 seconds (3.59 km/s) at sea level, has a mass of approximately 3.5 tonnes (7,700 pounds), and is capable of throttling between 67% and 109% of its rated power level in one-percent increments. The RS-25 operates at temperatures ranging from −253 °C (−423 °F) to 3300 °C (6000 °F).

The Space Shuttle used a cluster of three RS-25 engines mounted in the stern structure of the orbiter, with fuel being drawn from the external tank. The engines were used for propulsion during the entirety of the spacecraft’s ascent, with additional thrust being provided by two solid rocket boosters and the orbiter’s two AJ-10 orbital maneuvering system engines. Following each flight, the RS-25 engines were removed from the orbiter, inspected, and refurbished before being reused on another mission.

Video Credit: Aerojet Rocketdyne

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 27, 2019

Delta IV GPS III SV-2 Launch

Posted by

 

 

Wikipedia dicit:

Delta IV is a group of five expendable launch systems in the Delta rocket family introduced in the early 2000s. Originally designed by Boeing’s Defense, Space & Security division for the Evolved Expendable Launch Vehicle (EELV) program, the Delta IV became a United Launch Alliance (ULA) product in 2006. The Delta IV was and is primarily a launch vehicle for United States Air Force military payloads, but has also been used to launch a number of U.S. government non-military payloads and a single commercial satellite.

The Delta IV originally had two main versions which allowed the family to cover a range of payload sizes and masses: the retired Medium (which had four configurations) and Heavy. As of 2019, only the Heavy remains active, with payloads that would previously fly on Medium moving to either the existing Atlas V or the forthcoming Vulcan. Retirement of the Delta IV is anticipated in 2024.

Delta IV vehicles are built in the ULA facility in Decatur, Alabama. Final assembly is completed at the launch site by ULA: at the Horizontal Integration Facility for launches from SLC-37B at Cape Canaveral and in a similar facility for launches from SLC-6 at Vandenberg Air Force Base.

Video Credit: ULA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 26, 2019

Soyuz MS-14 Rollout and Launch

Posted by

 



 

 

Wikipedia dicit:

The Soyuz launcher was introduced in 1966, deriving from the Vostok launcher, which in turn was based on the 8K74 or R-7a intercontinental ballistic missile. It was initially a three-stage rocket with a Block I upper stage. Later a Molniya variant was produced by adding a fourth stage, allowing it to reach the highly elliptical molniya orbit. A later variant was the Soyuz-U. While the exact model and variant designations were kept secret from the west, the Soyuz launcher was referred to by either the United States Department of Defense designation of SL-4, or the Sheldon designation of A-2 (developed by Charles S. Sheldon, an analyst with the Library of Congress). Both systems for naming Soviet rockets stopped being used as more accurate information became available.

The production of Soyuz launchers reached a peak of 60 per year in the early 1980s. It has become the world’s most used space launcher, flying over 1700 times, far more than any other rocket. Despite its age and perhaps thanks to its simplicity, this rocket family has been notable for its low cost and high reliability.

Video Credit: Roscosmos

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 22, 2019

Biomining

Posted by

 

 

NASA dicit:

As humans plan expeditions to places such as the Moon and Mars, biomining could offer a way to obtain needed materials on other planetary bodies rather than bringing them from Earth. However, microbes and rocks interact differently outside of Earth’s gravity, potentially affecting output from extraterrestrial biomining. A new investigation on the International Space Station is studying how microbes grow on and alter planetary rocks in microgravity and simulated Martian gravity.

Video Credit: NASA Johnson

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 21, 2019

Spica RCS

Posted by

 

 

Copenhagen Suborbitals dicit:

Adrian guides you through his project of a Reaction Control System for our crewed Spica space capsule. This system will enable our spacecraft to orient and stabilize itself in the vacuum of space.

Copenhagen Suborbitals is the world’s only manned, amateur space program, 100% crowdfunded and nonprofit. In the future, one of us will fly to space on a home built rocket.

Video Credit: Copenhagen Suborbitals

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 20, 2019

Soyuz MS-14 Assembly

Posted by

 



 

 

Wikipedia dicit:

A Soyuz spacecraft consists of three parts (from front to back): a spheroid orbital module, which provides accommodation for the crew during their mission; a small aerodynamic reentry module, which returns the crew to Earth; a cylindrical service module with solar panels attached, which contains the instruments and engines.

The orbital and service modules are single-use and are destroyed upon reentry in the atmosphere. Though this might seem wasteful, it reduces the amount of heat shielding required for reentry, saving mass compared to designs containing all of the living space and life support in a single capsule. This allows smaller rockets to launch the spacecraft or can be used to increase the habitable space available to the crew (6.2 m3 or 220 cu ft in Apollo CM vs 7.5 m3 or 260 cu ft in Soyuz) in the mass budget. The orbital and reentry portions are habitable living space, with the service module containing the fuel, main engines and instrumentation.

Soyuz can carry up to three crew members and provide life support for about 30 person days. The life support system provides a nitrogen/oxygen atmosphere at sea level partial pressures. The atmosphere is regenerated through potassium superoxide (KO2) cylinders, which absorb most of the carbon dioxide (CO2) and water produced by the crew and regenerates the oxygen, and lithium hydroxide (LiOH) cylinders which absorb leftover CO2.

The vehicle is protected during launch by a payload fairing, which is jettisoned along with the SAS at ​2 1â„2 minutes into launch. It has an automatic docking system. The ship can be operated automatically, or by a pilot independently of ground control.

Video Credit: Roscosmos

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis