In pursuit of understanding why the Sun’s atmosphere is so much hotter than the surface, and to help differentiate between a host of theories about what causes this heating, researchers turn to NASA’s Interface Region Imaging Spectrograph (IRIS) mission. IRIS was finely tuned with a high-resolution imager to zoom in on specific hard-to-see events on the Sun.
A paper published in Nature on September 21, 2020, reports on the first ever clear images of nanojets — bright, thin lights that travel perpendicular to magnetic structures in the solar atmosphere called the corona — in a process that reveals the existence of one of the potential coronal heating candidates: nanoflares.
Video credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/Scientist: Patrick Antolin (Northumbria University)/Data Visualizer: Tom Bridgman (GST)/Producer: Joy Ng (USRA)/Writer: Susannah Darling (ADNET)
A cold and stable Antarctic vortex supported the development of the 12th-largest ozone hole on record in 2020. The hole reached its peak extent on September 20 at 24.8 million square kilometers.
Video credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/Kathleen Gaeta (GSFC Interns): Lead Producer/Eric Nash (SSAI): Visualizer/Kathryn Mersmann (USRA): Graphics/Paul Newman (NASA/GSFC): Scientist/Susan Strahan (USRA): Scientist
Cameras outside the International Space Station captured dramatic views of Hurricane Zeta at 12:50 p.m. Eastern time Wednesday October 28, 2020 as the storm churned 200 miles south-southwest of New Orleans packing winds of 90 miles an hour.
Zeta is expected to make landfall near New Orleans later in the day Wednesday October 28 as a Category 2 hurricane before accelerating to the northeast.
On Saturday, October 24, 2020, SpaceX completed its 100th successful flight since Falcon 1 first flew to orbit in 2008. Over the course of these flights, SpaceX landed Falcon’s first stage booster 63 times and re-flew boosters 45 times.
The Sun is stirring from its latest slumber. As sunspots and flares, signs of a new solar cycle, bubble from the Sun’s surface, scientists are anticipating a flurry of solar activity over the next few years. Roughly every 11 years, at the height of this cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South Poles’ swapping places every decade — and the Sun transitions from sluggish to active and stormy. At its quietest, the Sun is at solar minimum; during solar maximum, the Sun blazes with bright flares and solar eruptions. In this video, view the Sun’s disk from our space telescopes as it transitions from minimum to maximum in the solar cycle.
Video credit: NASA’s Goddard Space Flight Center/Joy Ng (USRA): Producer/Tom Bridgman (GST): Data Visualizer/Maria-Jose Vinas Garcia (Telophase): Support/Pedro Cota (ADNET Systems): Support
NASA’s Neil Gehrels Swift Observatory tallied the water lost from an interstellar comet as it approached and rounded the Sun. The object, 2I/Borisov, traveled through the solar system in late 2019.
Comets are frozen clumps of gases mixed with dust, often called “dirty snowballs.” As a one approaches the Sun, frozen material on its surface warms and converts to gas.
When sunlight breaks apart water molecules, one of the fragments is hydroxyl, a molecule composed of one oxygen and one hydrogen atom. Swift detects the fingerprint of ultraviolet light emitted by hydroxyl using its Ultraviolet/Optical Telescope (UVOT). Between September and February, Swift made six observations of Borisov with Swift. It saw a 50% increase in the amount of hydroxyl — and therefore water — Borisov produced between Nov. 1 and Dec. 1, which was just seven days from the comet’s closest brush with the Sun.
At peak activity, Borisov shed eight gallons (30 liters) of water per second, enough to fill a bathtub in about 10 seconds. During its trip through the solar system, the comet lost nearly 61 million gallons (230 million liters) of water — enough to fill over 92 Olympic-size swimming pools. As it moved away from the Sun, Borisov’s water loss dropped off — and did so more rapidly than any previously observed comet.
Swift’s water production measurements also helped show that Borisov’s minimum size is just under half a mile (0.74 kilometer) across. The team estimates at least 55% of Borisov’s surface was actively shedding material when it was closest to the Sun. That’s a large fraction compared to most observed solar system comets.
Video credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/Scott Wiessinger (USRA): Lead Producer/Jeanette Kazmierczak (University of Maryland College Park): Lead Science Writer/Scott Wiessinger (USRA): Lead Animator/Dennis Bodewits (Auburn University): Scientist/Zexi Xing (University of Hong Kong): Scientist/Francis Reddy (University of Maryland College Park): Science Writer