“See in this time-lapse how the Sentinel-3B satellite was prepared for its liftoff on 25 April 2018 from Plesetsk in Russia.
Sentinel-3B joined its twin, Sentinel-3A, in orbit. The pairing of identical satellites provides the best coverage and data delivery for Europe’s Copernicus programme – the largest environmental monitoring programme in the world. The satellites carry the same suite of cutting-edge instruments to measure oceans, land, ice and atmosphere.”
“Earth’s energy budget is a metaphor for the delicate equilibrium between energy received from the Sun versus energy radiated back out in to space. Research into precise details of Earth’s energy budget is vital for understanding how the planet’s climate may be changing, as well as variabilities in solar energy output.
Missions like NASA’s TSIS will help scientists keep a close watch. NASA’s Total and Spectral Solar Irradiance Sensor, or TSIS-1, is a mission to measure the sun’s energy input to Earth. Various satellites have captured a continuous record of this solar energy input since 1978. TSIS-1 sensors advance previous measurements, enabling scientists to study the sun’s natural influence on Earth’s ozone layer, atmospheric circulation, clouds, and ecosystems. These observations are essential for a scientific understanding of the effects of solar variability on the Earth system.
NASA Goddard Space Flight Center manages the project. The University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) built both instruments and provides mission operations. The International Space Station carries TSIS-1.”
Credits Video: NASA’s Goddard Space Flight Center/Michael Starobin
“The two Voyager space probes were originally conceived as part of the Mariner program, and they were thus initially named Mariner 11 and Mariner 12. They were then moved into a separate program named “Mariner Jupiter-Saturn”, later renamed the Voyager Program because it was thought that the design of the two space probes had progressed sufficiently beyond that of the Mariner family to merit a separate name.
The Voyager Program was similar to the Planetary Grand Tour planned during the late 1960s and early 70s. The Grand Tour would take advantage of an alignment of the outer planets discovered by Gary Flandro, an aerospace engineer at the Jet Propulsion Laboratory. This alignment, which occurs once every 175 years, would occur in the late 1970s and make it possible to use gravitational assists to explore Jupiter, Saturn, Uranus, Neptune, and Pluto. The Planetary Grand Tour was to send several pairs of probes to fly by all the outer planets (including Pluto, then still considered a planet) along various trajectories, including Jupiter-Saturn-Pluto and Jupiter-Uranus-Neptune. Limited funding ended the Grand Tour program, but elements were incorporated into the Voyager Program, which fulfilled many of the flyby objectives of the Grand Tour except a visit to Pluto.
Voyager 2 was the first to launch. Its trajectory was designed to allow flybys of Jupiter, Saturn, Uranus, and Neptune. Voyager 1 was launched after Voyager 2, but along a shorter and faster trajectory that was designed to provide an optimal flyby of Saturn’s moon Titan, which was known to be quite large and to possess a dense atmosphere. This encounter sent Voyager 1 out of the plane of the ecliptic, ending its planetary science mission. Had Voyager 1 been unable to perform the Titan flyby, the trajectory of Voyager 2 could have been altered to explore Titan, forgoing any visit to Uranus and Neptune. Voyager 1 was not launched on a trajectory that would have allowed it to continue to Uranus and Neptune, but could have continued from Saturn to Pluto without exploring Titan.
During the 1990s, Voyager 1 overtook the slower deep-space probes Pioneer 10 and Pioneer 11 to become the most distant human made object from Earth, a record that it will keep for the foreseeable future. The New Horizons probe, which had a higher launch velocity than Voyager 1, is traveling more slowly due to the extra speed Voyager 1 gained from its flybys of Jupiter and Saturn. Voyager 1 and Pioneer 10 are the most widely separated human made objects anywhere, since they are traveling in roughly opposite directions from the Solar System.
In December 2004, Voyager 1 crossed the termination shock, where the solar wind is slowed to subsonic speed, and entered the heliosheath, where the solar wind is compressed and made turbulent due to interactions with the interstellar medium. On December 10, 2007, Voyager 2 also reached the termination shock, about 1 billion miles closer to the Sun than from where Voyager 1 first crossed it, indicating that the Solar System is asymmetrical.
In 2010 Voyager 1 reported that the outward velocity of the solar wind had dropped to zero, and scientists predicted it was nearing interstellar space. In 2011, data from the Voyagers determined that the heliosheath is not smooth, but filled with giant magnetic bubbles, theorized to form when the magnetic field of the Sun becomes warped at the edge of the Solar System.
On 15 June 2012, scientists at NASA reported that Voyager 1 was very close to entering interstellar space, indicated by a sharp rise in high-energy particles from outside the Solar System. In September 2013, NASA announced that Voyager 1 had crossed the heliopause on August 25, 2012, making it the first spacecraft to enter interstellar space.
As of 2017 Voyager 1 and Voyager 2 continue to monitor conditions in the outer expanses of the Solar System. The Voyager spacecraft are expected to be able to operate science instruments through 2020, when limited power will require instruments to be deactivated one by one. Sometime around 2025, there will no longer be sufficient power to operate any science instruments.”
“The ExoMars rover is a planned robotic Mars rover, part of the international ExoMars programme led by the European Space Agency and the Russian Roscosmos State Corporation.
The rover is an autonomous six-wheeled terrain vehicle once designed to weigh up to 295 kg (650 lb), approximately 60% more than NASA’s 2004 Mars Exploration Rovers Spirit and Opportunity, but about one third that of NASA’s Curiosity rover launched in 2011.
In February 2012, following NASA’s withdrawal, the ESA went back to previous designs for a smaller rover, once calculated to be 207 kg (456 lb). Instrumentation will consist of the exobiology laboratory suite, known as Pasteur analytical laboratory to look for signs of biomolecules or biosignatures from past life. Among other instruments, the rover will also carry a 2-metre (6 ft 7 in) sub-surface drill to pull up samples for its on-board laboratory.
The lead builder of the ExoMars rover, the British division of Airbus Defence and Space, began procuring critical components in March 2014. In December 2014, ESA member states approved the funding for the rover, to be sent on the second launch in 2018, but insufficient funds had already started to threaten a launch delay until 2020. The wheels and suspension system are paid by the Canadian Space Agency and are being manufactured by MDA Corporation in Canada.
By March 2013, the spacecraft was scheduled to launch in 2018 with a Mars landing in early 2019. However, delays in European and Russian industrial activities and deliveries of scientific payloads, forced the launch to be pushed back. In May 2016, ESA announced that the mission had been moved to the next available launch window of July 2020. An ESA ministerial meeting in December 2016 will consider mission issues including €300 million in ExoMars funding and lessons learned from the ExoMars 2016 Schiaparelli mission. One concern is that the Schiaparelli module crashed during its Mars atmospheric entry, and this landing system is being produced in near duplication for the ExoMars lander.”
“Orbital ATK’s vision for the next step toward human space missions to Mars employs our flight-proven Cygnus advanced maneuvering spacecraft as a human habitat in cislunar space, the region between the Moon and Earth. In the early 2020s we would launch the initial habitat on NASA’s SLS rocket. Featuring a modular design, the habitat would serve both as a destination for crewed missions and as an unmanned testbed to prove-out the technologies needed for long-duration human space missions. The habitat is also envisioned as a base for lunar missions by international partners or commercial ventures. With additional habitation and propulsion modules, the habitat could be outfitted for a Mars pathfinder mission.”
“The new Cold Atom Lab (CAL) facility could help answer some big questions in modern physics. CAL produces clouds of atoms that are ten billion times colder than deep space. The facility uses lasers and magnetic forces to freeze the atoms until they are almost motionless. In the microgravity environment on the space station, it’s possible to observe these ultra-cold atoms for much longer in than what’s possible on the ground. The research done using CAL could potentially lead to a number of improved technologies, including sensors, quantum computers and atomic clocks used in spacecraft navigation.”