“These are the last images taken by Rosetta’s high resolution OSIRIS camera during the mission’s final hours at Comet 67P/Churyumov-Gerasimenko. As it moved closer towards the surface it scanned across an ancient pit and sent back images showing what would become its final resting place.”
Credits Video: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – CC BY-SA 4.0/D. C. Jimeno and M. P. Ayucar
“The second data release of ESA’s Gaia mission has produced an extraordinary catalogue of over one and a half billion stars in our galaxy. Based on observations between July 2014 to May 2016, it includes the most accurate information yet on the positions, brightness, distance, motion, colour and temperature of stars in the Milky Way as well as information on asteroids and quasars.”
“This is an animated view of the 14 099 asteroids in our Solar System, as viewed by ESA’s Gaia satellite using information from the mission’s second data release. The orbits of the 200 brightest asteroids are also shown, as determined using Gaia data. In future data releases, Gaia will also provide asteroid spectra and enable a complete characterisation of the asteroid belt. The combination of dynamical and physical information that is being collected by Gaia provides an unprecedented opportunity to improve our understanding of the origin and the evolution of the Solar System. “
Credits Video: ESA / Gaia / DPAC / Gaia Data Processing and Analysis Consortium (DPAC); Orbits: Gaia Coordinating Unit 4; P. Tanga, Observatoire de la Côte d’Azur, France; F. Spoto, IMCCE, Observatoire de Paris, France; Animation: Gaia Sky; S. Jordan / T. Sagristà , Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany
“On June 11, NASA’s Fermi Gamma-ray Space Telescope celebrated a decade of using gamma rays, the highest-energy form of light in the cosmos, to study black holes, neutron stars, and other extreme cosmic objects and events. Fermi’s main instrument, the Large Area Telescope (LAT), has observed more than 5,000 individual gamma-ray sources.
In 1949, Enrico Fermi — an Italian-American pioneer in high-energy physics and Nobel laureate for whom the mission was named — suggested that cosmic rays, particles traveling at nearly the speed of light, could be propelled by supernova shock waves. In 2013, Fermi’s LAT used gamma rays to prove these stellar remnants are at least one source of the speedy particles. Fermi’s all-sky map, produced by the LAT, has revealed two massive structures extending above and below the plane of the Milky Way. These two “bubbles” span 50,000 light-years and were probably produced by the supermassive black hole at the center of the galaxy only a few million years ago.
The Gamma-ray Burst Monitor (GBM), Fermi’s secondary instrument, can see the entire sky at any instant, except the portion blocked by Earth. The satellite has observed over 2,300 gamma-ray bursts, the most luminous events in the universe. Gamma-ray bursts occur when massive stars collapse or neutron stars or black holes merge and drive jets of particles at nearly the speed of light. In those jets, matter travels at different speeds and collides, emitting gamma rays.
On August 17, 2017, Fermi detected a gamma-ray burst from a powerful explosion in the constellation Hydra. At almost the same time, the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory detected ripples in space-time from the same event, the merger of two neutron stars. This was the first time light and gravitational waves were detected from the same source. Scientists also used another gamma-ray burst detected by Fermi to confirm Einstein’s theory that space-time is smooth and continuous. “
Credits Music: “Unseen Husband” from Killer Tracks
Credits Video: NASA’s Goddard Space Flight Center
“Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That’s really difficult – there’s no telling when or where a supernova might happen next.”
“Scientists analyzing the first data from the Neutron Star Interior Composition Explorer (NICER) mission have found two stars that revolve around each other every 38 minutes. One of the stars in the system, called IGR J17062-6143 (J17062 for short), is a rapidly spinning, superdense star called a pulsar. The discovery bestows the stellar pair with the record for the shortest-known orbital period for a certain class of pulsar binary system.
The data from NICER also show J17062’s stars are only about 186,000 miles (300,000 kilometers) apart, less than the distance between Earth and the Moon. Based on the pair’s breakneck orbital period and separation, scientists involved in a new study of the system think the second star is a hydrogen-poor white dwarf.
The researchers were also able to determine that J17062’s stars revolve around each other in a circular orbit, which is common for this type of system. The white dwarf donor star is a “lightweight,” only around 1.5 percent of our Sun’s mass. The pulsar is much heavier, around 1.4 solar masses. The stars orbit a point around 1,900 miles (3,000 km) from the pulsar, almost as if the donor star orbits a stationary neutron star, but NICER can is sensitive enough to detect a slight fluctuation in the neutron star’s X-ray emission due to the tug from the donor star.”
Music Credit: “Games Show Sphere 2” from Killer Tracks