“New Horizons scientists created this movie from 14 different images taken by the New Horizons Long Range Reconnaissance Imager (LORRI) shortly before the spacecraft flew past the Kuiper Belt object nicknamed Ultima Thule (officially named 2014 MU69) on January 1, 2019. The central frame of this sequence was taken on January 1 at 5:26:54 UT (12:26 a.m. EST), when New Horizons was 4,117 miles (6,640 kilometers) from Ultima Thule, some 4.1 billion miles (6.6 billion kilometers) from Earth. Ultima Thule nearly completely fills the LORRI image and is perfectly captured in the frames, an astounding technical feat given the uncertain location of Ultima Thule and the New Horizons spacecraft flying past it at over 32,000 miles per hour.”
“The animation depicts a shape model of Ultima Thule created by the New Horizons science team based on its analysis of all the pre-flyby images sent to Earth so far. The first half of the movie mimics the view from the New Horizons spacecraft as it approached Ultima Thule and has the snowman shape that was so frequently mentioned in the days surrounding the New Year’s 2019 flyby.
The movie then rotates to a side-view that illustrates what New Horizons might have seen had its cameras been pointing toward Ultima Thule only a few minutes after closest approach. While that wasn’t the case, mission scientists have been able to piece together a model of this side-view, which has been at least partially confirmed by a set of crescent images of Ultima Thule. There is still considerable uncertainty in the sizes of Ultima (the larger section, or lobe) and Thule (the smaller) in the vertical dimension, but it’s now clear that Ultima looks more like a pancake than a sphere, and that Thule is also very non-spherical.”
“Scientists have mapped the environment surrounding a black hole that is 10 times the mass of the Sun using NASA’s Neutron star Interior Composition Explorer (NICER) payload aboard the International Space Station. NICER detected X-ray light from a recently discovered black hole, called MAXI J1820+070 (J1820 for short), as it consumed material from a companion star. Waves of X-rays formed “light echoes” that reflected off the swirling gas near the black hole and revealed changes in the environment’s size and shape.
A black hole can siphon gas from a nearby star and into a ring of material called an accretion disk that glows in X-rays. Above this disk is the corona, a region of subatomic particles that glows in higher-energy X-rays.
Astrophysicists want to better understand how the inner edge of the accretion disk and the corona change in size and shape as a black hole accretes material from its companion star. If they can understand how and why these changes occur in stellar-mass black holes over a period of weeks, they could shed light on how supermassive black holes evolve over millions of years and how they affect the galaxies in which they reside.
One method used to chart those changes is called X-ray reverberation mapping, which uses X-ray reflections in much the same way sonar uses sound waves to map undersea terrain. From 10,000 light-years away, the scientists estimated that the corona contracted vertically from roughly 100 to 10 miles — that’s like seeing something the size of a blueberry shrink to something the size of a poppy seed at the distance of Pluto.”
“A planetary system is a set of gravitationally bound non-stellar objects in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consist of bodies such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals and circumstellar disks. The Sun together with its planetary system, which includes Earth, is known as the Solar System. The term exoplanetary system is sometimes used in reference to other planetary systems.”
“Because of the Moon’s lack of water, atmosphere, and tectonic plates, there is little erosion, and craters are found that exceed two billion years in age. The age of large craters is determined by the number of smaller craters contained within it, older craters generally accumulating more small, contained craters.
The smallest craters found have been microscopic in size, found in rocks returned to Earth from the Moon. The largest crater called such is about 290 kilometres (181 mi) across in diameter, located near the lunar South Pole. However, it is believed that many of the lunar maria were formed by giant impacts, with the resulting depression filled by upwelling lava.”
“101955 Bennu (provisional designation 1999 RQ36) is a carbonaceous asteroid in the Apollo group discovered by the LINEAR Project on 11 September 1999. It is a potentially hazardous object that is listed on the Sentry Risk Table with the second-highest cumulative rating on the Palermo Technical Impact Hazard Scale. It has a cumulative 1-in-2,700 chance of impacting Earth between 2175 and 2199. Its name references Bennu, the ancient Egyptian mythological bird associated with the Sun, creation, and rebirth.
101955 Bennu has a mean diameter of approximately 492 m (1,614 ft; 0.306 mi) and has been observed extensively with the Arecibo Observatory planetary radar and the Goldstone Deep Space Network.
Bennu is the target of the OSIRIS-REx mission which is intended to return samples to Earth in 2023 for further study. On 3 December 2018, the OSIRIS-REx spacecraft arrived at Bennu after a two-year journey. Before attempting to obtain a sample from the asteroid, it will map out Bennu’s surface in detail and orbit the asteroid to calculate its mass.”