OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Robotic Exploration category

October 20, 2020

Bennu Sampling

Posted by

 

 

Wikipedia dicit:

Rehearsals will be performed before the sampling event, during which the solar arrays will be raised into a Y-shaped configuration to minimize the chance of dust accumulation during contact and provide more ground clearance in case the spacecraft tips over (up to 45°) during contact. The descent will be very slow to minimize thruster firings prior to contact in order to reduce the likelihood of asteroid surface contamination by unreacted hydrazine propellant. Contact with the surface of Bennu will be detected using accelerometers, and the impact force will be dissipated by a spring in the TAGSAM arm.

Upon surface contact by the TAGSAM instrument, a burst of nitrogen gas will be released, which will blow regolith particles smaller than 2 centimetres (0.8 in) into the sampler head at the end of the robotic arm. A five-second timer will limit collection time to mitigate the chance of a collision. After the timer expires, the back-away maneuver will initiate a safe departure from the asteroid.

OSIRIS-REx will then halt the drift away from the asteroid in case it is necessary to return for another sampling attempt. The spacecraft will use images and spinning maneuvers to verify the sample has been acquired as well as determine its mass and verify it is in excess of the required 60 grams (2.1 oz). In the event of a failed sampling attempt, the spacecraft will return for another try. There is enough nitrogen gas for three attempts.

In addition to the bulk sampling mechanism, contact pads on the end of the sampling head will passively collect dust grains smaller than 1 mm, upon contact with the asteroid. These pads are made from tiny loops of stainless steel.

After the sampling attempt, the Sample-Return Capsule (SRC) lid will be opened to allow the sampler head to be stowed. The arm will then be retracted into its launch configuration, and the SRC lid will be closed and latched preparing to return to Earth.

Video credit: Lockheed Martin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 15, 2020

Bennu Tour

Posted by

 

 

NASA dicit:

When NASA’s OSIRIS-REx spacecraft arrived at asteroid Bennu in December 2018, its close-up images confirmed what mission planners had predicted nearly two decades before: Bennu is made of loose material weakly clumped together by gravity, and shaped like a spinning top. This major validation, however, was accompanied by a major surprise. Scientists had expected Bennu’s surface to consist of fine-grained material like a sandy beach, but were instead greeted by a rugged world littered with boulders – the size of cars, the size of houses, the size of football fields. Now, thanks to laser altimetry data and high-resolution imagery from OSIRIS-REx, we can take a tour of Bennu’s remarkable terrain.

Video credit: NASA’s Goddard Space Flight Center/NASA/University of Arizona/CSA/York University/MDA/Dan Gallagher (USRA): Producer/Kel Elkins (USRA): Lead Visualizer/Jonathan North (USRA): Animator/Adriana Manrique Gutierrez (USRA): Animator/Dan Gallagher (USRA): Narrator/Erin Morton (The University of Arizona): Support/Aaron E. Lepsch (ADNET): Support/“Timelapse Clouds” by Andy Blythe and Marten Joustra; “The Wilderness” by Benjamin James Parsons; “Maps of Deception” by Idriss-El-Mehdi Bennani, Olivier Louis Perrot, and Philippe Andre Vandenhende

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 14, 2020

Juno Flight

Posted by

 

 

NASA dicit:

This video uses images from NASA’s Juno mission to recreate what it might have looked like to ride along with the Juno spacecraft as it performed its 27th close flyby of Jupiter on June 2, 2020.

During the closest approach of this pass, the Juno spacecraft came within approximately 2,100 miles (3,400 kilometers) of Jupiter’s cloud tops. At that point, Jupiter’s powerful gravity accelerated the spacecraft to tremendous speed – about 130,000 mph (209,000 kilometers per hour) relative to the planet.

Citizen scientist Kevin M. Gill created the video using data from the spacecraft’s JunoCam instrument. The sequence combines 41 JunoCam still images digitally projected onto a sphere, with a virtual “camera” providing views of Jupiter from different angles as the spacecraft speeds by.

Video credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 23, 2020

OSIRIS-REx and Bennu

Posted by

 

 

Wikipedia dicit:

Using data collected by NASA’s OSIRIS-REx mission, this animation shows the trajectories of particles after their emission from asteroid Bennu’s surface. The animation emphasizes the four largest particle ejection events detected at Bennu from December 2018 through September 2019. Additional particles, some with lifetimes of several days, that are not related to the ejections are also visible.

Video credit: M. Brozovic/JPL-Caltech/NASA/University of Arizona

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 3, 2020

Shallow Lightning at Jupiter

Posted by

 

 

NASA dicit:

This animation takes the viewer on a simulated journey into Jupiter’s exotic high-altitude electrical storms. Get an up-close view of Mission Juno’s newly discovered “shallow lighting” flashes and dive into the violent atmospheric jet of the Nautilus cloud. The smallest white “pop-up” clouds on top of the Nautilus are about 100 km across. The ride navigates through Jupiter’s towering thunderstorms, dodging the spray of ammonia-water rain, and shallow lighting flashes. At these altitudes — too cold for pure liquid water to exit – ammonia gas acts like an antifreeze that melts the water ice crystals flung up to these heights by Jupiter’s powerful storms – giving Jupiter an unexpected ammonia-water cloud that can electrify the sky. The animation was created by combining an image of high-altitude clouds from the JunoCam imager on NASA’s Juno spacecraft with a computer-generated animation.

Video credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gil/Animation: Koji Kuramura/Music: Vangelis

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 2, 2020

MAVEN

Posted by

 

 

NASA dicit:

Mars’ nightside atmosphere glows and pulsates in this data animation from MAVEN spacecraft observations. Green-to-white false color shows the enhanced brightenings on Mars’ ultraviolet “nightglow” measured by MAVEN’s Imaging UltraViolet Spectrograph at about 70 kilometers (approximately 40 miles) altitude. A simulated view of the Mars globe is added digitally for context, with ice caps visible at the poles. Three nightglow brightenings occur over one Mars rotation, the first much brighter than the other two. All three brightenings occur shortly after sunset, appearing on the left of this view of the night side of the planet. The pulsations are caused by downwards winds which enhance the chemical reaction creating nitric oxide which causes the glow. Months of data were averaged to identify these patterns, indicating they repeat nightly.

Video credit: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis