“ExoMars (Exobiology on Mars) is a two-part Martian astrobiology project to search for evidence of life on Mars, a joint mission of the European Space Agency (ESA) and the Russian space agency Roscosmos. The first part, launched in 2016, placed a trace gas research and communication satellite into Mars orbit and released a stationary experimental lander (which crashed). The second part is planned to launch in 2020, and to land a rover on the surface, supporting a science mission that is expected to last into 2022 or beyond.
ExoMars goals are to search for signs of past and present life on Mars, investigate how the Martian water and geochemical environment varies, investigate atmospheric trace gases and their sources and by doing so demonstrate the technologies for a future Mars sample return mission. The mission will search for biosignatures of Martian life, past or present, employing several spacecraft elements to be sent to Mars on two launches.
The ExoMars Trace Gas Orbiter (TGO) and a test stationary lander called Schiaparelli were launched on 14 March 2016. TGO entered Mars orbit on 19 October 2016 and will proceed to map the sources of methane (CH4) and other trace gases present in the Martian atmosphere that could be evidence for possible biological or geological activity. The Schiaparelli experimental lander separated from TGO on 16 October and was maneuvered to land in Meridiani Planum. As of 19 October 2016, ESA had not received a signal that the landing was successful. On 21 October 2016, NASA released a Mars Reconnaissance Orbiter image showing what appears to be the lander crash site. The landing was designed to test new key technologies to safely deliver the 2020 rover mission. The TGO features four instruments and will also act as a communications relay satellite.
In 2020, a Roscosmos-built lander (ExoMars 2020 surface platform) is to deliver the ESA-built ExoMars Rover to the Martian surface. The rover will also include some Roscosmos built instruments. The second mission operations and communications will be led by ALTEC’s Rover Control Centre in Italy.”
“Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft flew by Mars and the asteroids 21 Lutetia and 2867 Å teins.
On 6 August 2014, the spacecraft reached the comet and performed a series of manoeuvres to be captured in its orbit. On 12 November, the lander module performed the first successful landing on a comet, though its battery power ran out two days later. Communications with Philae were briefly restored in June and July 2015, but due to diminishing solar power, Rosetta’s communications module with the lander was turned off on 27 July 2016. On 30 September 2016, the Rosetta spacecraft ended its mission by landing on the comet in its Ma’at region.
The probe is named after the Rosetta Stone, a stele of Egyptian origin featuring a decree in three scripts. The lander is named after the Philae obelisk, which bears a bilingual Greek and Egyptian hieroglyphic inscription. A comparison of its hieroglyphs with those on the Rosetta Stone catalysed the deciphering of the Egyptian writing system. Similarly, it is hoped that these spacecraft will result in better understanding of comets and the early Solar System. In a more direct analogy to its namesake, the Rosetta spacecraft also carries a micro-etched nickel alloy Rosetta disc donated by the Long Now Foundation inscribed with 13,000 pages of text in 1,200 languages.”
“On Sept. 8, NASA launched the Origins Spectral Interpretation Resource Identification Security – Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx is the first U.S. mission to sample an asteroid. The spacecraft is scheduled to arrive at near-Earth asteroid Bennu in 2018, survey the asteroid’s surface, retrieve at least 60 grams (2.1 ounces) of surface material, and return the sample to Earth in 2023 for study. Analysis of the sample will reveal the earliest stages of the solar system’s evolution and the history of Bennu over the past 4.5 billion years.”
“NASA’s Juno spacecraft has crossed the boundary of Jupiter’s immense magnetic field. Juno’s Waves instrument recorded the encounter with the bow shock over the course of about two hours on June 24, 2016. “Bow shock” is where the supersonic solar wind is heated and slowed by Jupiter’s magnetosphere. It is analogous to a sonic boom on Earth. The next day, June 25, 2016, the Waves instrument witnessed the crossing of the magnetopause. “Trapped continuum radiation” refers to waves trapped in a low-density cavity in Jupiter’s magnetosphere. […]
After nearly five years traveling through space to its destination, NASA’s Juno spacecraft will arrive in orbit around Jupiter on July 4, 2016. This video shows a peek of what the spacecraft saw as it closed in on its destination. Jupiter is visible along with the four Galilean moons: Callisto, Ganymede, Europa and Io. The images were taken prior to June 30, 2016, when the JunoCam camera and science instruments were turned off to prepare the spacecraft for the daring orbit insertion maneuver.”
“Mars Reconnaissance Orbiter (MRO) is a multipurpose spacecraft designed to conduct reconnaissance and exploration of Mars from orbit. The US$720 million spacecraft was built by Lockheed Martin under the supervision of the Jet Propulsion Laboratory (JPL). The mission is managed by the California Institute of Technology, at the JPL, in La Cañada Flintridge, California, for the NASA Science Mission Directorate, Washington, D.C. It was launched August 12, 2005, and attained Martian orbit on March 10, 2006. In November 2006, after five months of aerobraking, it entered its final science orbit and began its primary science phase. As MRO entered orbit, it joined five other active spacecraft that were either in orbit or on the planet’s surface: Mars Global Surveyor, Mars Express, 2001 Mars Odyssey, and the two Mars Exploration Rovers (Spirit and Opportunity); at the time, this set a record for the most operational spacecraft in the immediate vicinity of Mars. Mars Global Surveyor and the Spirit rover have since ceased to function; the remainder remain operational as of March 2016.
MRO contains a host of scientific instruments such as cameras, spectrometers, and radar, which are used to analyze the landforms, stratigraphy, minerals, and ice of Mars. It paves the way for future spacecraft by monitoring Mars’ daily weather and surface conditions, studying potential landing sites, and hosting a new telecommunications system. MRO’s telecommunications system will transfer more data back to Earth than all previous interplanetary missions combined, and MRO will serve as a highly capable relay satellite for future missions.[…]
On September 29, 2006 (sol 402), MRO took its first high resolution image from its science orbit. This image is said to resolve items as small as 90 cm (3 feet) in diameter. On October 6, NASA released detailed pictures from the MRO of Victoria crater along with the Opportunity rover on the rim above it. In November, problems began to surface in the operation of two MRO spacecraft instruments. A stepping mechanism in the Mars Climate Sounder (MCS) skipped on multiple occasions resulting in a field of view that is slightly out of position. By December normal operations of the instrument was suspended, although a mitigation strategy allows the instrument to continue making most of its intended observations. Also, an increase in noise and resulting bad pixels has been observed in several CCDs of the High Resolution Imaging Science Experiment (HiRISE). Operation of this camera with a longer warm-up time has alleviated the issue. However, the cause is still unknown and may return.
HiRISE continues to return images that have enabled discoveries regarding the geology of Mars. Foremost among these is the announcement of banded terrain observations indicating the presence and action of liquid carbon dioxide (CO2) or water on the surface of Mars in its recent geological past. HiRISE was able to photograph the Phoenix lander during its parachuted descent to Vastitas Borealis on May 25, 2008 (sol 990).
The orbiter continued to experience recurring problems in 2009, including four spontaneous resets, culminating in a four-month shut-down of the spacecraft from August to December. While engineers have not determined the cause of the recurrent resets, they have created new software to help troubleshoot the problem should it recur.
On March 3, 2010, the Mars Reconnaissance Orbiter passed another significant milestone, having transmitted over 100 terabits of data back to Earth, which was more than all other interplanetary probes sent from Earth combined.
On August 6, 2012 (sol 2483), the orbiter passed over Gale crater, the landing site of the Mars Science Laboratory mission, during its EDL phase. It captured an image via the HiRISE camera of the Curiosity rover descending with its backshell and supersonic parachute.
NASA reported that the Mars Reconnaissance Orbiter, as well as the Mars Odyssey Orbiter and MAVEN orbiter had a chance to study the Comet Siding Spring flyby on October 19, 2014.
On July 29, 2015, the Mars Reconnaissance Orbiter was placed into a new orbit to provide communications support during the arrival of the InSight Mars lander mission on September 28, 2016. The maneuver’s engine burn lasted for 75 seconds.”
“ExoMars (Exobiology on Mars) Programme is an astrobiology project to investigate the past habitability environment of Mars and to demonstrate new technologies paving the way for a future Mars sample return mission in the 2020s.
The programme is led by the European Space Agency (ESA) in collaboration with the Russian Federal Space Agency (Roscosmos). The programme will search for biosignatures of Martian life, past or present, employing several spacecraft elements to be sent to Mars on two launches. The ExoMars Trace Gas Orbiter (TGO) and a test stationary lander called Schiaparelli were launched on 14 March 2016. The TGO will deliver Schiaparelli lander in 19 October 2016, and then proceed to map the sources of methane on Mars and other gases. The TGO features four instruments and will also act as a communications relay satellite.
The Trace Gas Orbiter (TGO) is a Mars telecommunications orbiter and atmospheric gas analyzer mission that was launched on 14 March 2016. The spacecraft will arrive in the Martian orbit in October 2016. It will deliver the ExoMars Schiaparelli EDM lander and then proceed to map the sources of methane on Mars and other gases, and in doing so, help select the landing site for the ExoMars rover to be launched in 2018. The presence of methane in Mars’ atmosphere is intriguing because its likely origin is either present-day life or geological activity. Upon the arrival of the rover in 2021, the orbiter would be transferred into a lower orbit where it would be able to perform analytical science activities as well as provide the Schiaparelli EDM lander and ExoMars rover with telecommunication relay. NASA provided an Electra telecommunications relay and navigation instrument to ensure communications between probes and rovers on the surface of Mars and controllers on Earth. The TGO would continue serving as a telecommunication relay satellite for future landed missions until 2022.
The Entry, Descent and Landing Demonstrator Module (EDM) called Schiaparelli, is intended to provide the European Space Agency (ESA) and Russia’s Roscosmos with the technology for landing on the surface of Mars. It was launched together with the ExoMars Trace Gas Orbiter (TGO) on 14 March 2016 and will land on 19 October 2016. The lander is equipped with a non-rechargeable electric battery with enough power for four sols. The landing will take place on Meridiani Planum during the dust storm season, which will provide a unique chance to characterize a dust-loaded atmosphere during entry and descent, and to conduct surface measurements associated with a dust-rich environment.
Once on the surface, it will measure the wind speed and direction, humidity, pressure and surface temperature, and determine the transparency of the atmosphere. It carries a surface payload, based on the proposed meteorological DREAMS (Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface) package, consists of a suite of sensors to measure the wind speed and direction (MetWind), humidity (MetHumi), pressure (MetBaro), surface temperature (MarsTem), the transparency of the atmosphere (Optical Depth Sensor; ODS), and atmospheric electrification (Atmospheric Radiation and Electricity Sensor; MicroARES). The DREAMS payload will function for 2 or 3 days as an environmental station for the duration of the EDM surface mission after landing”