“All of NASA’s interplanetary launches to date have been from Kennedy Space Center in Cape Canaveral, Florida, in part because the physics of launching off the East Coast are better for journeys to other planets. However, InSight will break the mold by launching from Vandenberg Air Force Base in California. It will be the first launch to another planet from the West Coast. A whole new region of the country will get to see an interplanetary launch when InSight rockets into the sky. On a clear day, the launch may be visible from Santa Maria, California to San Diego, California.
Weather permitting, InSight’s pre-dawn launch (4:05 a.m.) may be visible for more than 10 million Californians without a need for them to drive to a special location. Just wake up early, check the InSight Website for assurance the launch is still on schedule, go outside, look at the western sky, marvel at the rocket’s flare as it travels southward, and cheer InSight bon voyage to Mars. The launch window is May 5 through June 8, 2018.”
“Starting next year, scientists will get their first look deep below the surface of Mars. That’s when NASA will send the first robotic lander dedicated to exploring the planet’s subsurface. InSight, which stands for Interior Exploration using Seismic Investigations, will study marsquakes to learn about the Martian crust, mantle and core.
When rocks crack or shift, they give off seismic waves that bounce throughout a planet. These waves, better known as quakes, travel at different speeds depending on the geologic material they travel through. Seismometers, like InSight’s SEIS instrument, measure the size, frequency and speed of these quakes, offering scientists a snapshot of the material they pass through.
Mars’ geologic record includes lighter rocks and minerals — which rose from the planet’s interior to form the Martian crust — and heavier rocks and minerals that sank to form the Martian mantle and core. By learning about the layering of these materials, scientists can explain why some rocky planets turn into an “Earth” rather than a “Mars” or “Venus” — a factor that is essential to understanding where life can appear in the universe.
Each time a quake happens on Mars, it will give InSight a “snapshot” of the planet’s interior. The InSight team estimates the spacecraft will see between a couple dozen to several hundred quakes over the course of the mission. Small meteorites, which pass through the thin Martian atmosphere on a regular basis, will also serve as seismic “snapshots.” One challenge will be getting a complete look at Mars using only one location. Most seismology on Earth takes measurements from multiple stations. InSight will have the planet’s only seismometer, requiring scientists to parse the data in creative ways.
InSight will measure more than seismology. The Doppler shift from a radio signal on the lander can reveal whether the planet’s core is still molten; a self-burrowing probe is designed to measure heat from the interior. Wind, pressure and temperature sensors will allow scientists to subtract vibrational “noise” caused by weather. Combining all this data will give us the most complete picture of Mars yet.”
“Mars has two moons, Phobos and Deimos. Both are small, airless bodies with irregular shapes. Because they lack protective atmospheres and magnetospheres, Phobos and Deimos are directly exposed to the solar wind for part of their orbits. Now, a study from NASA’s Goddard Space Flight Center suggests that the solar wind creates a complex electrical environment around Phobos, giving its night side and shadowed craters a static electric charge. This could impact plans for future robotic and human explorers to study the moons of Mars.”
“For hundreds of years, this gaseous giant planet appeared shrouded in colorful bands of clouds extending from dusk to dawn, referred to as zones and belts. The bands were thought to be an expression of Jovian weather, related to winds blowing eastward and westward at different speeds.
This animation illustrates a recent discovery by Juno that demonstrates these east-west flows, also known as jet-streams penetrate deep into the planet’s atmosphere, to a depth of about 1,900 miles (3,000 kilometers). Due to Jupiter’s rapid rotation (Jupiter’s day is about 10 hours), these flows extend into the interior parallel to Jupiter’s axis of rotation, in the form of nested cylinders. Below this layer the flows decay, possibly slowed by Jupiter’s strong magnetic field.
The depth of these flows surprised scientists who estimate the total mass involved in these jet streams to be about 1% of Jupiter’s mass (Jupiter’s mass is over 300 times that of Earth). This discovery was revealed by the unprecedented accuracy of Juno’s measurements of the gravity field.”
“NASA’s InSight spacecraft arrived at Vandenberg Air Force Base, California, to begin final preparations for launch. InSight will be the first mission to look deep beneath the Martian surface, studying the planet’s interior by listening for marsquakes and measuring its heat output. It will be the first planetary spacecraft to launch from this west coast launch facility. The launch period for InSight opens May 5, 2018 and continues through June 8, 2018. “
“These observations of Phobos and Saturn were taken by the Super Resolution Channel of the High Resolution Stereo Camera on Mars Express. The video comprises 30 separate images acquired during Mars Express orbit 16 346 on 26 November 2016. The slight up and down movement of Saturn and Phobos in these images is caused by the oscillation of the spacecraft’s orientation after completing the turn towards the moon. Phobos can be seen in the foreground, partially illuminated, with Saturn visible as a small ringed dot in the distance.”