OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the School Ain’t Over category

September 7, 2018

Mars Volcanoes

Posted by

 

 

Wikipedia dixit:

“Volcanic activity, or volcanism, has played a significant role in the geologic evolution of Mars. Scientists have known since the Mariner 9 mission in 1972 that volcanic features cover large portions of the Martian surface. These features include extensive lava flows, vast lava plains, and the largest known volcanoes in the Solar System. Martian volcanic features range in age from Noachian (>3.7 billion years) to late Amazonian (< 500 million years), indicating that the planet has been volcanically active throughout its history, and some speculate it probably still is so today. Both Earth and Mars are large, differentiated planets built from similar chondritic materials. Many of the same magmatic processes that occur on Earth also occurred on Mars, and both planets are similar enough compositionally that the same names can be applied to their igneous rocks and minerals.

Volcanism is a process in which magma from a planet’s interior rises through the crust and erupts on the surface. The erupted materials consist of molten rock (lava), hot fragmental debris (tephra or ash), and gases. Volcanism is a principal way that planets release their internal heat. Volcanic eruptions produce distinctive landforms, rock types, and terrains that provide a window on the chemical composition, thermal state, and history of a planet’s interior.

Magma is a complex, high-temperature mixture of molten silicates, suspended crystals, and dissolved gases. Magma on Mars likely ascends in a similar manner to that on Earth. It rises through the lower crust in diapiric bodies that are less dense than the surrounding material. As the magma rises, it eventually reaches regions of lower density. When the magma density matches that of the host rock, buoyancy is neutralized and the magma body stalls. At this point, it may form a magma chamber and spread out laterally into a network of dikes and sills. Subsequently, the magma may cool and solidify to form intrusive igneous bodies (plutons). Geologists estimate that about 80% of the magma generated on Earth stalls in the crust and never reaches the surface.

As magma rises and cools, it undergoes many complex and dynamic compositional changes. Heavier minerals may crystallize and settle to the bottom of the magma chamber. The magma may also assimilate portions of host rock or mix with other batches of magma. These processes alter the composition of the remaining melt, so that any magma reaching the surface may be chemically quite different from its parent melt. Magmas that have been so altered are said to be “evolved” to distinguish them from “primitive” magmas that more closely resemble the composition of their mantle source. More highly evolved magmas are usually felsic, that is enriched in silica, volatiles, and other light elements compared to iron- and magnesium-rich (mafic) primitive magmas. The degree and extent to which magmas evolve over time is an indication of a planet’s level of internal heat and tectonic activity. The Earth’s continental crust is made up of evolved granitic rocks that developed through many episodes of magmatic reprocessing. Evolved igneous rocks are much less common on cold, dead bodies such as the Moon. Mars, being intermediate in size between the Earth and the Moon, is thought to be intermediate in its level of magmatic activity.

The most common form of volcanism on the Earth is basaltic. Basalts are extrusive igneous rocks derived from the partial melting of the upper mantle. They are rich in iron and magnesium (mafic) minerals and commonly dark gray in color. The principal type of volcanism on Mars is almost certainly basaltic too. On Earth, basaltic magmas commonly erupt as highly fluid flows, which either emerge directly from vents or form by the coalescence of molten clots at the base of fire fountains (Hawaiian eruption). These styles are also common on Mars, but the lower gravity and atmospheric pressure on Mars allow nucleation of gas bubbles (see above) to occur more readily and at greater depths than on Earth. As a consequence, Martian basaltic volcanoes are also capable of erupting large quantities of ash in Plinian-style eruptions. In a Plinian eruption, hot ash is incorporated into the atmosphere, forming a huge convective column (cloud). If insufficient atmosphere is incorporated, the column may collapse to form pyroclastic flows. Plinian eruptions are rare in basaltic volcanoes on Earth where such eruptions are most commonly associated with silica-rich andesitic or rhyolitic magmas (e.g., Mount St. Helens).

Because the lower gravity of Mars generates less buoyancy forces on magma rising through the crust, the magma chambers that feed volcanoes on Mars are thought to be deeper and much larger than those on Earth. If a magma body on Mars is to reach close enough to the surface to erupt before solidifying, it must be big. Consequently, eruptions on Mars are less frequent than on Earth, but are of enormous scale and eruptive rate when they do occur. Somewhat paradoxically, the lower gravity of Mars also allows for longer and more widespread lava flows. Lava eruptions on Mars may be unimaginably huge. A vast lava flow the size of the state of Oregon has recently been described in western Elysium Planitia. The flow is believed to have been emplaced turbulently over the span of several weeks and thought to be one of the youngest lava flows on Mars.”

Video Credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 22, 2018

Gamma-Ray Burst Monitor

Posted by

 

 

NASA dixit:

“The Gamma-ray Burst Monitor (GBM) is one of the instruments aboard the Fermi Gamma-ray Space Telescope. The GBM studies gamma-ray bursts, the most powerful explosions in the universe, as well as other flashes of gamma rays. Gamma-ray bursts are created when massive stars collapse into black holes or when two superdense stars merge, also producing a black hole. The GBM sees these bursts across the entire sky, and scientists are using its observations to learn more about the universe.”

Video Credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
August 9, 2018

Dust Mitigation Technology

Posted by

 

 

NASA dixit:

“NASA scientists at the agency’s Kennedy Space Center in Florida are developing the Electrodynamic Dust Shield to avoid dust problems for astronauts exploring the Moon, Mars and other distant destinations. The technology soon will be tested aboard the International Space Station.”

Credits Video: NASA Kennedy

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 19, 2018

Expose-R2 Spacewalk

Posted by

 

 

ESA dixit:

“As part of ESA’s Expose-R2 project, 46 species of bacteria, fungi and arthropods were delivered by a Progress supply ship to the International Space Station in July 2014. Spacewalking cosmonauts Alexander Skvortsov and Oleg Artemyev attached the package to the outside of the Zvezda module on 18 August 2014, where it stayed until it was retrieved 18 months later.

This ‘Expose-R2’ is a miniature photochemistry laboratory that exposes samples to the harsh environment of space. Subjected to the full blast of the Sun’s energy as well as vacuum, radiation and temperature swings, they are helping researchers investigating how chemicals and microbiological life react to unprotected spaceflight – on a comet, for example. Previous Expose experiments have already shown that ‘water bears’ and a species of lichen can survive a trip into space.

Expose-R2 was returned inside the International Space Station Station by Yuri Malenchenko and Sergei Volkov during a spacewalk on 3 February 2016 and stored ahead of return to Earth. The samples were held in sealed compartments and covered to block out all light. The vacuum of space is sucking out the water, oxygen and other gases in the samples. Their temperature can drop to –12°C as the Station passes through Earth’s shadow, rising to 40°C at other times, and undergoing a similar process to the freeze-drying used to preserve foods.

Earth is protected from the Sun’s full radiation by our atmosphere filtering out the hard-hitting short wavelengths that are damaging to life. It is difficult to recreate on the ground the full spectrum of the Sun’s light so these experiments in space are the only way to test how biological and material samples behave in conditions beyond Earth.

ESA has a long history of testing organisms and organic chemicals in the harsh environment of space. Previous experiments revealed that lichens and water bears can survive spaceflight unprotected, hinting at the possibility of species colonizing planets via meteoroids. “

Credits Video: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 8, 2018

SpotMini Autonomous Navigation

Posted by

 

 

Boston Dynamics dixit:

“SpotMini autonomously navigates a specified route through an office and lab facility. Before the test, the robot is manually driven through the space so it can build a map of the space using visual data from cameras mounted on the front, back and sides of the robot. During the autonomous run, SpotMini uses data from the cameras to localize itself in the map and to detect and avoid obstacles. Once the operator presses ‘GO’ at the beginning of the video, the robot is on its own. Total walk time for this route is just over 6 minutes. “

Credits Video: Boston Dynamics

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 1, 2018

Monitoring Ozone

Posted by

 

 

Wikipedia dixit:

“The ozone layer or ozone shield is a region of Earth’s stratosphere that absorbs most of the Sun’s ultraviolet radiation. It contains high concentrations of ozone (O3) in relation to other parts of the atmosphere, although still small in relation to other gases in the stratosphere. The ozone layer contains less than 10 parts per million of ozone, while the average ozone concentration in Earth’s atmosphere as a whole is about 0.3 parts per million. The ozone layer is mainly found in the lower portion of the stratosphere, from approximately 20 to 30 kilometers (12 to 19 mi) above Earth, although its thickness varies seasonally and geographically.

The ozone layer was discovered in 1913 by the French physicists Charles Fabry and Henri Buisson. Measurements of the sun showed that the radiation sent out from its surface and reaching the ground on Earth is usually consistent with the spectrum of a black body with a temperature in the range of 5,500–6,000 K (5,227 to 5,727 °C), except that there was no radiation below a wavelength of about 310 nm at the ultraviolet end of the spectrum. It was deduced that the missing radiation was being absorbed by something in the atmosphere. Eventually the spectrum of the missing radiation was matched to only one known chemical, ozone. Its properties were explored in detail by the British meteorologist G. M. B. Dobson, who developed a simple spectrophotometer (the Dobsonmeter) that could be used to measure stratospheric ozone from the ground. Between 1928 and 1958, Dobson established a worldwide network of ozone monitoring stations, which continue to operate to this day. The “Dobson unit”, a convenient measure of the amount of ozone overhead, is named in his honor.

The ozone layer absorbs 97 to 99 percent of the Sun’s medium-frequency ultraviolet light (from about 200 nm to 315 nm wavelength), which otherwise would potentially damage exposed life forms near the surface.

In 1976 atmospheric research revealed that the ozone layer was being depleted by chemicals released by industry, mainly chlorofluorocarbons (CFCs). Concerns that increased UV radiation due to ozone depletion threatened life on Earth led to bans on the chemicals, and the latest evidence is that ozone depletion has slowed or stopped. “

Credits Video: ESA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis