OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Telescopes category

July 1, 2020

SDO Decade

Posted by

 

 

NASA dicit:

As of June 2020, NASA’s Solar Dynamics Observatory — SDO — has now been watching the Sun non-stop for over a full decade. From its orbit in space around the Earth, SDO has gathered 425 million high-resolution images of the Sun, amassing 20 million gigabytes of data over the past 10 years. This information has enabled countless new discoveries about the workings of our closest star and how it influences the solar system.

With a triad of instruments, SDO captures an image of the Sun every 0.75 seconds. The Atmospheric Imaging Assembly (AIA) instrument alone captures images every 12 seconds at 10 different wavelengths of light. This 10-year time lapse showcases photos taken at a wavelength of 17.1 nanometers, which is an extreme ultraviolet wavelength that shows the Sun’s outermost atmospheric layer — the corona. Compiling one photo every hour, the movie condenses a decade of the Sun into 61 minutes. The video shows the rise and fall in activity that occurs as part of the Sun’s 11-year solar cycle and notable events, like transiting planets and eruptions.

While SDO has kept an unblinking eye pointed towards the Sun, there have been a few moments it missed. The dark frames in the video are caused by Earth or the Moon eclipsing SDO as they pass between the spacecraft and the Sun. A longer blackout in 2016 was caused by a temporary issue with the AIA instrument that was successfully resolved after a week. The images where the Sun is off-center were observed when SDO was calibrating its instruments.

Video credit: NASA’s Goddard Space Flight Center/SDO/Scott Wiessinger (USRA): Lead Producer/Tom Bridgman (GST): Lead Data Visualizer/Mara Johnson-Groh (Wyle Information Systems): Lead Science Writer/Lars Leonhard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 30, 2020

AU Micro

Posted by

 

 

NASA dicit:

NASA’s Transiting Exoplanet Survey Satellite (TESS) and retired Spitzer Space Telescope have found a young Neptune-size world orbiting AU Microscopii, a cool, nearby M dwarf star surrounded by a vast disk of debris. The discovery makes the system a touchstone for understanding how stars and planets form and evolve.

Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA): Lead Producer/Chris Smith (USRA): Lead Animator/Francis Reddy (University of Maryland College Park): Science Writer

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 3, 2020

K2-18b

Posted by

 

 

Wikipedia dicit:

K2-18b was identified as part of the Kepler space telescope program, one of over 1,200 exoplanets discovered during the “Second Light” K2 mission. The discovery of K2-18b was made in 2015, orbiting a red dwarf star (now known as K2-18) with a stellar spectral type of M2.8 about 124 light-years (38 pc) from Earth. The planet was detected through variations in the star’s light curve caused by the transit of the planet in front of the star as seen from Earth. The planet was designated “K2-18b” as it was the eighteenth planet discovered during the K2 mission. The predicted relatively low contrast between the planet and its host star would make it easier to observe K2-18b’s atmosphere in the future.

In 2017, data from the Spitzer Space Telescope confirmed that K2-18b orbits in the habitable zone around K2-18 with a 33-day period, short enough to allow for observations of multiple K2-18b orbital cycles and improving the statistical significance of the signal. This led to widespread interest in continued observations of K2-18b.

Later studies on K2-18b using the High Accuracy Radial Velocity Planet Searcher (HARPS) and the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES) instruments also identified a likely second exoplanet, K2-18c, with an estimated mass of 5.62±0.84 M⊕ in a tighter, 9-day orbit, but this additional planet has not yet been confirmed, and may instead be due to stellar activity.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 2, 2020

New HST View of Jupiter

Posted by

 

 

Wikipedia dicit:

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass one-thousandth that of the Sun, but two-and-a-half times that of all the other planets in the Solar System combined. Jupiter is one of the brightest objects visible to the naked eye in the night sky, and has been known to ancient civilizations since before recorded history. It is named after the Roman god Jupiter. When viewed from Earth, Jupiter can be bright enough for its reflected light to cast shadows, and is on average the third-brightest natural object in the night sky after the Moon and Venus.

Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, though helium comprises only about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other giant planets, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet’s shape is that of an oblate spheroid (it has a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. Jupiter has 79 known moons, including the four large Galilean moons discovered by Galileo Galilei in 1610. Ganymede, the largest of these, has a diameter greater than that of the planet Mercury.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
June 1, 2020

Comet 2I/Borisov

Posted by

 

 

Wikipedia dicit:

2I/Borisov, originally designated C/2019 Q4 (Borisov), is the first observed interstellar comet and the second observed interstellar interloper after ʻOumuamua. 2I/Borisov has a heliocentric orbital eccentricity of 3.36 and is not bound to the Sun. The comet passed through the ecliptic of the Solar System at the end of October 2019, and made its closest approach to the Sun at just over 2 AU on 8 December 2019. In November 2019, astronomers from Yale University said that the comet (including coma and tail), was 14 times the size of Earth, and stated, “It’s humbling to realize how small Earth is next to this visitor from another solar system.” In the middle of March, 2020, the comet was observed to fragment; and later, in April, even more evidence of fragmentation was reported.

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 21, 2020

Roman

Posted by

 

 

NASA dicit:

Scheduled to launch in the mid-2020s, the Nancy Grace Roman Space Telescope, formerly known as WFIRST, will function as Hubble’s wide-eyed cousin. While just as sensitive as Hubble’s cameras, the Roman Space Telescope’s 300-megapixel Wide Field Instrument will image a sky area 100 times larger. This means a single Roman Space Telescope image will hold the equivalent detail of 100 pictures from Hubble.

The mission’s wide field of view will allow it to generate a never-before-seen big picture of the universe, which will help astronomers explore some of the greatest mysteries of the cosmos, like why the expansion of the universe seems to be accelerating. Some scientists attribute the speed-up to dark energy, an unexplained pressure that makes up 68% of the total content of the cosmos.

The Wide Field Instrument will also allow the Roman Space Telescope to measure the matter in hundreds of millions of distant galaxies through a phenomenon dictated by Einstein’s relativity theory. Massive objects like galaxies curve space-time in a way that bends light passing near them, creating a distorted, magnified view of far-off galaxies behind them. The Roman Space Telescope will paint a broad picture of how matter is structured throughout the universe, allowing scientists to put the governing physics of its assembly to the ultimate test.

The Roman Space Telescope can use this same light-bending phenomenon to study planets beyond our solar system, known as exoplanets. In a process called microlensing, a foreground star in our galaxy acts as the lens. When its motion randomly aligns with a distant background star, the lens magnifies, brightens and distorts the background star. The Roman Space Telescope’s microlensing survey will monitor 100 million stars for hundreds of days and is expected to find about 2,500 planets, well targeted at rocky planets in and beyond the region where liquid water may exist.

These results will make the Roman Space Telescope an ideal companion to missions like NASA’s Kepler and the upcoming Transiting Exoplanet Survey Satellite (TESS), which are designed to study larger planets orbiting closer to their host stars. Together, discoveries from these three missions will help complete the census of planets beyond our solar system. The combined data will also overlap in a critical area known as the habitable zone, the orbiting distance from a host star that would permit a planet’s surface to harbor liquid water — and potentially life.

By pioneering an array of innovative technologies, the Roman Space Telescope will serve as a multipurpose mission, formulating a big picture of the universe and helping us answer some of the most profound questions in astrophysics, such as how the universe evolved into what we see today, its ultimate fate and whether we are alone.

Video credit: NASA’s Goddard Space Flight Center
Scott Wiessinger (USRA): Lead Producer
Claire Andreoli (NASA/GSFC): Lead Public Affairs Officer
Barb Mattson (University of Maryland College Park): Narrator
Francis Reddy (University of Maryland College Park): Science Writer
Michael Lentz (USRA): Animator
Chris Meaney (KBRwyle): Animator
Adriana Manrique Gutierrez (USRA): Animator
Scott Wiessinger (USRA): Animator
Scott Wiessinger (USRA): Editor

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis