OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Telescopes category

October 23, 2020

The Solar Cycle

Posted by

 

 

NASA dicit:

The Sun is stirring from its latest slumber. As sunspots and flares, signs of a new solar cycle, bubble from the Sun’s surface, scientists are anticipating a flurry of solar activity over the next few years. Roughly every 11 years, at the height of this cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South Poles’ swapping places every decade — and the Sun transitions from sluggish to active and stormy. At its quietest, the Sun is at solar minimum; during solar maximum, the Sun blazes with bright flares and solar eruptions. In this video, view the Sun’s disk from our space telescopes as it transitions from minimum to maximum in the solar cycle.

Video credit: NASA’s Goddard Space Flight Center/Joy Ng (USRA): Producer/Tom Bridgman (GST): Data Visualizer/Maria-Jose Vinas Garcia (Telophase): Support/Pedro Cota (ADNET Systems): Support

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
October 22, 2020

Swift Measured 2I/Borisov Water Loss

Posted by

 

 

NASA dicit:

NASA’s Neil Gehrels Swift Observatory tallied the water lost from an interstellar comet as it approached and rounded the Sun. The object, 2I/Borisov, traveled through the solar system in late 2019.

Comets are frozen clumps of gases mixed with dust, often called “dirty snowballs.” As a one approaches the Sun, frozen material on its surface warms and converts to gas.

When sunlight breaks apart water molecules, one of the fragments is hydroxyl, a molecule composed of one oxygen and one hydrogen atom. Swift detects the fingerprint of ultraviolet light emitted by hydroxyl using its Ultraviolet/Optical Telescope (UVOT). Between September and February, Swift made six observations of Borisov with Swift. It saw a 50% increase in the amount of hydroxyl — and therefore water — Borisov produced between Nov. 1 and Dec. 1, which was just seven days from the comet’s closest brush with the Sun.

At peak activity, Borisov shed eight gallons (30 liters) of water per second, enough to fill a bathtub in about 10 seconds. During its trip through the solar system, the comet lost nearly 61 million gallons (230 million liters) of water — enough to fill over 92 Olympic-size swimming pools. As it moved away from the Sun, Borisov’s water loss dropped off — and did so more rapidly than any previously observed comet.

Swift’s water production measurements also helped show that Borisov’s minimum size is just under half a mile (0.74 kilometer) across. The team estimates at least 55% of Borisov’s surface was actively shedding material when it was closest to the Sun. That’s a large fraction compared to most observed solar system comets.

Video credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/Scott Wiessinger (USRA): Lead Producer/Jeanette Kazmierczak (University of Maryland College Park): Lead Science Writer/Scott Wiessinger (USRA): Lead Animator/Dennis Bodewits (Auburn University): Scientist/Zexi Xing (University of Hong Kong): Scientist/Francis Reddy (University of Maryland College Park): Science Writer

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
September 24, 2020

WD 1856

Posted by

 

 

Wikipedia dicit:

WD 1856+534 is a white dwarf located in the constellation of Draco. At a distance of about 25 parsecs (80 ly) from Earth, it is the outer component of a visual triple star system consisting of an inner pair of red dwarf stars. The white dwarf displays a featureless absorption spectrum, lacking strong optical absorption or emission features in its atmosphere. It has an effective temperature of 4,700 K (4,430 °C; 8,000 °F), corresponding to an age of approximately 5.8 billion years. WD 1856+534 is approximately half as massive as the Sun, while its radius is much smaller, being 40% larger than Earth.

The white dwarf is known to host one exoplanet in orbit around it. The exoplanet was detected through the transit method by the Transiting Exoplanet Survey Satellite (TESS) between July and August 2019. An analysis of the transit data in 2020 revealed that it is a Jupiter-like giant planet with a radius over ten times that of Earth’s, and orbits its host star closely at a distance of 0.02 astronomical units, or 60 times closer than Mercury’s distance from the Sun. The unexpectedly close distance of the exoplanet to the white dwarf implies that it must have migrated inward after its host star evolved from a red giant to a white dwarf, otherwise it would have been engulfed by its star.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 16, 2020

JWST and Ariane V

Posted by

 

 

NASA dicit:

This video shows how NASA’s James Webb Space Telescope is designed to fold to a much smaller size in order to fit inside the Ariane V rocket for launch to space. The largest, most complex space observatory ever built, must fold itself to fit within a 17.8-foot (5.4-meter) payload fairing, and survive the rigors of a rocket ride to orbit. After liftoff, the entire observatory will unfold in a carefully choreographed series of steps before beginning to make groundbreaking observations of the cosmos.

Video credit: NASA’s Goddard Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 6, 2020

KELT-9 b

Posted by

 

 

NASA dicit:

Measurements from NASAs Transiting Exoplanet Survey Satellite (TESS) have enabled astronomers to greatly improve their understanding of the bizarre environment of KELT-9 b, one of the hottest planets known. Located about 670 light-years away in the constellation Cygnus, KELT-9 b was discovered in 2017 because the planet passed in front of its star for a part of each orbit, an event called a transit. Transits regularly dim the stars light by a small but detectable amount.

Between July 18 and Sept. 11, 2019, as part of the mission’s yearlong campaign to observe the northern sky, TESS observed 27 transits of KELT-9 b, and these observations allowed the team to model the systems unusual star and its impact on the planet. KELT-9 b is a gas giant world about 1.8 times bigger than Jupiter, with 2.9 times its mass. Tidal forces have locked its rotation so the same side always faces its star. The planet swings around its star in just 36 hours on an orbit that carries it almost directly above both of the star’s poles.

The close orbit means the planet’s dayside temperature is around 7,800 degrees Fahrenheit (4,300 C), hotter than the surfaces of some stars. This intense heating also causes the planets atmosphere to stream away into space.

Its odd host star is about twice the size of the Sun and averages about 56 percent hotter. But it spins 38 times faster than the Sun, completing a full rotation in just 16 hours. Its rapid spin distorts the stars shape, flattening it at the poles and widening its midsection. This causes the stars poles to heat up and brighten while its equatorial region cools and dims, a phenomenon called gravity darkening. The result is a temperature difference across the stars surface of almost 1,500 F (800 C).

With each orbit, KELT-9 b twice experiences the full range of stellar temperatures, producing what amounts to a peculiar seasonal sequence. The planet experiences summer when it swings over each hot pole and winter when it passes over the stars cooler midsection. So KELT-9 b experiences two summers and two winters every year, with each season about nine hours.

KELT-9 b begins its transit near the star’s bright poles, and then blocks less and less light as it travels over the star’s dimmer equator. This asymmetry provides clues to the temperature and brightness changes across the stars surface, and they permitted the team to reconstruct the stars out-of-round shape, how its oriented in space, its range of surface temperatures, and other factors impacting the planet.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
July 2, 2020

Star Shadow

Posted by

 

 

NASA dicit:

In 2017, NASA’s Hubble Space Telescope captured an image of a huge wing-shaped shadow cast by a fledgling star’s unseen, planet-forming disk. The young star, called HBC 672, is casting the shadow across a more distant cloud in a star-forming region—like a fly wandering into the beam of a flashlight shining on a wall.

Video credit: NASA’s Goddard Space Flight Center/Paul Morris (USRA): Producer / Editor/Visualization Credit: NASA, ESA, and A. James and G. Bacon (STScI)/Jason Steele [ ASCAP ]/Soundcast Music [ SESAC ] and Universal Production Music.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis