OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

Archive for the Space Telescopes category

June 13, 2016

Massive Black Hole Shreds Passing Star

Posted by

 

 

NASA dixit:

“This artist’s rendering illustrates new findings about a star shredded by a black hole. When a star wanders too close to a black hole, intense tidal forces rip the star apart. In these events, called “tidal disruptions,” some of the stellar debris is flung outward at high speed while the rest falls toward the black hole. This causes a distinct X-ray flare that can last for a few years. NASA’s Chandra X-ray Observatory, Swift Gamma-ray Burst Explorer, and ESA/NASA’s XMM-Newton collected different pieces of this astronomical puzzle in a tidal disruption event called ASASSN-14li, which was found in an optical search by the All-Sky Automated Survey for Supernovae (ASAS-SN) in November 2014. The event occurred near a super-massive black hole estimated to weigh a few million times the mass of the sun in the center of PGC 043234, a galaxy that lies about 290 million light-years away. Astronomers hope to find more events like ASASSN-14li to test theoretical models about how black holes affect their environments.

During the tidal disruption event, filaments containing much of the star’s mass fall toward the black hole. Eventually these gaseous filaments merge into a smooth, hot disk glowing brightly in X-rays. As the disk forms, its central region heats up tremendously, which drives a flow of material, called a wind, away from the disk.”

Video credit: NASA’s Goddard Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
May 29, 2016

NASA SDO Year 6 in Ultra-HD

Posted by

 

 

NASA dixit:

“The sun is always changing and NASA’s Solar Dynamics Observatory is always watching. Launched on Feb. 11, 2010, SDO keeps a 24-hour eye on the entire disk of the sun, with a prime view of the graceful dance of solar material coursing through the sun’s atmosphere, the corona. SDO’s sixth year in orbit was no exception. This video shows that entire sixth year — from Jan. 1, 2015, to Jan. 28, 2016, as one time-lapse sequence. At full quality on YouTube, this video is ultra-high definition 3840×2160 and 29.97 frames per second. Each frame represents 2 hours. […]

SDO’s Atmospheric Imaging Assembly (AIA) captures a shot of the sun every 12 seconds in 10 different wavelengths. The images shown here are based on a wavelength of 171 angstroms, which is in the extreme ultraviolet range and shows solar material at around 600,000 kelvins (about 1,079,540 degrees F). In this wavelength it is easy to see the sun’s 25-day rotation.

During the course of the video, the sun subtly increases and decreases in apparent size. This is because the distance between the SDO spacecraft and the sun varies over time. The image is, however, remarkably consistent and stable despite the fact that SDO orbits Earth at 6,876 mph, and Earth orbits the sun at 67,062 mph.

Scientists study these images to better understand the complex electromagnetic system causing the constant movement on the sun, which can ultimately have an effect closer to Earth, too. Flares and another type of solar explosion called coronal mass ejections can sometimes disrupt technology in space. Moreover, studying our closest star is one way of learning about other stars in the galaxy. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, built, operates and manages the SDO spacecraft for NASA’s Science Mission Directorate in Washington, D.C.”

Video credit: NASA’s Goddard Space Flight Center/Wiessinger

Music credit: “Tides,” a track available from Killer Tracks

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
January 4, 2016

The Sun In Ultra-HD

Posted by

 

 

NASA dixit:

“It’s always shining, always ablaze with light and energy that drive weather, biology and more. In addition to keeping life alive on Earth, the sun also sends out a constant flow of particles called the solar wind, and it occasionally erupts with giant clouds of solar material, called coronal mass ejections, or explosions of X-rays called solar flares. These events can rattle our space environment out to the very edges of our solar system. In space, NASA’s Solar Dynamics Observatory, or SDO, keeps an eye on our nearest star 24/7. SDO captures images of the sun in 10 different wavelengths, each of which helps highlight a different temperature of solar material. In this video, we experience SDO images of the sun in unprecedented detail. Presented in ultra-high definition, the video presents the dance of the ultra-hot material on our life-giving star in extraordinary detail, offering an intimate view of the grand forces of the solar system.”

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
December 2, 2015

SOHO’s 20 Years in Space

Posted by

 

 

NASA dixit:

“Dr. Joe Gurman of NASA’s Goddard Space Flight Center provides commentary on selected shots from SOHO’s 20 years in space.

After 20 years in space, ESA and NASA’s Solar and Heliospheric Observatory, or SOHO, is still going strong. Originally launched in 1995 to study the sun and its influence out to the very edges of the solar system, SOHO revolutionized this field of science, known as heliophysics, providing the basis for nearly 5,000 scientific papers. SOHO also found an unexpected role as the greatest comet hunter of all time—reaching 3,000 comet discoveries in September 2015.

When SOHO was launched on Dec. 2, 1995, the field of heliophysics looked very different than it does today. Questions about the interior of the sun, the origin of the constant outflow of material from the sun known as the solar wind, and the mysterious heating of the solar atmosphere were still unanswered. Twenty years later, not only do we have a much better idea about what powers the sun, but our entire understanding of how the sun behaves has changed.”

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
March 8, 2010

Kepler Anniversary

Posted by

 

Credits: NASA/Kim Shiflett

 

On March 6, 2009, the Delta II launch vehicle carrying the Kepler spacecraft lifted off from Launch Complex 17-B at Cape Canaveral Air Force Station in Florida.

 

In May 2009, Kepler started to hunt for other Earth-like planets in our galaxy. The technique used by Kepler to discover exo-planets is called transits. The large field of view of the Kepler telescope simultaneously captures the light of a very large number of stars in the Cygnus and Lyra constellations.

 

Kepler scientists already announced the discovery of five exoplanets named Kepler 4b, 5b, 6b, 7b, and 8b. The data collected by Kepler was also used to detect the atmosphere of the HAT-P-7b giant gas planet.

 

 

Kepler is expected to be operational until at least November 2012. Scientists hope to discover exo-planets in the habitable zone of other stars. The habitable zone is a region around a star where water can exist in liquid form on the surface of a planet. You can find more information about Kepler on NASA’s Kepler Mission website.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
February 7, 2010

Solar Dynamics Observatory

Posted by

 

Credits: NASA/Goddard Space Flight Center Scientific Visualization Studio

 

Predictions of space weather are important as the effects of magnetic storms can be very significant: disruptions in radio communications, radiation hazards to astronauts in LEO, and power lines surges, just to name a few. The goal of NASA’s Living With a Star (LWS) Program is to understand the changing Sun and its effects on the Solar System. The Solar Dynamics Observatory (SDO) is one of NASA’s LWS missions.

 

 

SDO will take measurements of the solar activity. There are seven science questions SDO will try to answer. Among them, what is the mechanism that drives the cycles of solar activity? How do the EUV variations relate to the magnetic activity of the Sun? Is it possible to make predictions regarding the space weather and climate? The last question, if answered, will make choosing the launch windows for future interplanetary manned missions an easier task.

 

The spacecraft is 2.2 x 2.2 x 4.5 m and 3-axis stabilized. At launch, it has a mass of 3200 kg (270 kg the payload and 1400 kg the fuel). The solar panels are 6.5 m across, cover 6.6 m2, and produce up to 1540 W of power.

 

Credits: NASA

 

SDO carries three instruments: the Atmospheric Imaging Assembly (AIA), EUV Variability Experiment (EVE), and the Helioseismic and Magnetic Imager (HMI). The instruments will take measurements that will reveal at a very high rate the variations of the Sun.

 

The HMI was developed at Stanford University and it will extend the SOHO/MDI instrument. The HMI will help to study the origin of variability and the various components of the magnetic activity of the Sun. The measurements aim at understanding the origin and evolution of sunspots, sources and drivers of solar activity and disturbances, connections between the internal processes and the dynamics of the corona and the heliosphere.

 

 

You can find more information about the instrument on the HMI page on Stanford University’s web site.

 

The AIA will capture images of the solar atmosphere in ten wavelengths every ten seconds. The data collected by the instrument will improve the understanding of the activity in the solar atmosphere. The instrument was developed by Lockheed Martin.

 

EVE was developed at University of Colorado at Boulder. EVE will measure the solar extreme ultraviolet irradiance.

 

The SDO will launch aboard an Atlas V launch vehicle from SLC 41 at Cape Canaveral. SDO will operate on a geosynchronous orbit, which will allow continuous observations of the Sun. The orbit will also allow a continuous contact with a single dedicated ground station. The high data acquisition rate required such a mission profile, as a large on-board storage system would add to the overall complexity of the system.

 

You can find more information about SDO on NASA’s website.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis