A team of engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, install the legs and wheels — otherwise known as the mobility suspension — on the Mars 2020 rover. The imagery for this accelerated time-lapse was taken on June 13, 2019, from a camera above the Spacecraft Assembly Facility’s High Bay 1 clean room.
A successful water flow test with the mobile launcher at Kennedy Space Center’s Pad 39B on July 2, 2019, put NASA one step closer to returning astronauts to the Moon by 2024, with the goal of sending humans to Mars. It was the first of nine tests to verify the sound suppression system is ready for launch of NASA’s Space Launch System for the first Artemis mission.
Approximately 450,000 gallons of water was released from an elevated water tank and distributed through large diameter piping and valves to water nozzles located in the Pad B flame deflector, the mobile launcher flame hole and on the launcher’s blast deck in just 45 seconds. That’s enough water to fill 45 residential swimming pools! The system reached a peak flow rate of 1.1 million gallons per minute.
NASA is going to the Moon and on to Mars, in a measured, sustainable way. Working with U.S. companies and international partners, NASA will push the boundaries of human exploration forward to the Moon. NASA is working to establish a permanent human presence on the Moon within the next decade to uncover new scientific discoveries and lay the foundation for private companies to build a lunar economy.
The lunar surface will serve as a crucial training ground and technology demonstration test site where we will prepare for future human missions to Mars and other destinations. Through an innovative combination of missions involving commercial and international partners, robotic lunar surface missions will begin as early as 2020, focus on scientific exploration of lunar resources, and prepare the lunar surface for a sustained human presence.
NASA’s Dragonfly rotorcraft-lander is seen approaching Saturn’s exotic moon Titan in this animation. Taking advantage of Titan’s dense atmosphere and low gravity, Dragonfly will explore dozens of locations across the icy world, sampling and measuring the compositions of Titan’s organic surface materials to characterize the habitability of Titan’s environment and investigate the progression of prebiotic chemistry.
The varied landscapes of the United States have unique relationships with water. On the East Coast, rain is a regular occurrence. In the West, drought is a constant threat. Rivers and lakes fed by rainfall, snowmelt or a mix of both provide two-thirds of the country’s drinking water while also supporting agriculture. Managing these water resources requires balancing growing demand for water in the face of shifting availability and changing climate. Many state and federal agencies and other organizations turn to NASA research, satellite data and analytical tools to help tackle these issues.
Since the 1960s, NASA has been steadily expanding its view of how fresh water moves around the planet. Early satellites that imaged clouds and snow cover evolved to more recent missions that quantify rain and snowfall worldwide every half-hour, make daily observations of global snow cover, detect changes in aquifers deep underground, and monitor moisture in soils every few days. These observations are some of the most powerful assets scientists have when studying the water cycle, how it affects people and their water supplies, and how it may change in a warming climate. At NASA, researchers maintain and refine these data sets, providing them to the public at no cost. NASA researchers also help to interpret the information with sophisticated computer programs that integrate the disparate data sets and fill gaps to create a coherent picture of where and how water moves around the planet every day.
A total solar eclipse occurred at the ascending node of the Moon’s orbit on July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 32 seconds visible from the Pacific Ocean.