OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

07-28-22

A History of Space Telescopes

Posted by

 

 

Wikipedia dicit:

The James Webb Space Telescope (JWST) is a space telescope designed primarily to conduct infrared astronomy. As the largest optical telescope in space, its greatly improved infrared resolution and sensitivity allow it to view objects too early, distant, or faint for the Hubble Space Telescope. This is expected to enable a broad range of investigations across the fields of astronomy and cosmology, such as observation of the first stars and the formation of the first galaxies, and detailed atmospheric characterization of potentially habitable exoplanets.

The U.S. National Aeronautics and Space Administration (NASA) led JWST’s development in collaboration with the European Space Agency (ESA) and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (GSFC) in Maryland managed telescope development, the Space Telescope Science Institute in Baltimore on the Homewood Campus of Johns Hopkins University operates JWST, and the prime contractor was Northrop Grumman. The telescope is named after James E. Webb, who was the administrator of NASA from 1961 to 1968 during the Mercury, Gemini, and Apollo programs.

The James Webb Space Telescope was launched on 25 December 2021 on an Ariane 5 rocket from Kourou, French Guiana, and arrived at the Sun–Earth L2 Lagrange point in January 2022. The first image from JWST was released to the public via a press conference on 11 July 2022. The telescope is the successor of the Hubble as NASA’s flagship mission in astrophysics.

Credit: Lockheed Martin

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
07-1-22

Planet Killer

Posted by

 

 

NASA dicit:

A star’s death throes have so violently disrupted its planetary system that the dead star left behind, called a white dwarf, is siphoning off debris from both the system’s inner and outer reaches. This is the first time astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets.

Archival data from NASA’s Hubble Space Telescope and other NASA observatories were essential in diagnosing this case of cosmic cannibalism. The findings help describe the violent nature of evolved planetary systems and can tell astronomers about the makeup of newly forming systems.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

NASA dicit:

Our Milky Way galaxy is haunted. The vast gulf of space between the stars is plied by the dead, burned-out and crushed remnants of once glorious stars. These black holes cannot be directly seen because their intense gravity swallows light. Like legendary wandering ghosts, their presence can only be deduced by seeing how they affect the environment around them.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 

 

Wikipedia dicit:

Dark matter is hypothesized to be a form of matter thought to account for approximately 85% of the matter in the universe and about a quarter of its total mass–energy density or about 2.241×10−27 kg/m3. Support for its presence is drawn from a variety of astrophysical observations, including gravitational effects that under current theories of gravity do not make sense, unless more matter is present than can be seen. For this reason, the hypothesis has been created that dark matter exists, is abundant in the universe, and has had a strong influence on its structure and evolution. The name is due to the fact that by all observations, should dark matter exist, it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect.

Primary support for dark matter comes from calculations showing that many galaxies would fly apart, or that they would not have formed or would not move as they do, if they did not contain a large amount of unseen matter. Other lines of evidence include observations in gravitational lensing and in the cosmic microwave background, along with astronomical observations of the observable universe’s current structure, the formation and evolution of galaxies, mass location during galactic collisions, and the motion of galaxies within galaxy clusters. In the standard Lambda-CDM model of cosmology, the total mass–energy of the universe contains 5% ordinary matter and energy, 27% dark matter and 68% of a form of energy known as dark energy. Thus, dark matter constitutes 85% of total mass, while dark energy plus dark matter constitute 95% of total mass–energy content.

Because dark matter has not yet been observed directly, if it exists, it must barely interact with ordinary baryonic matter and radiation, except through gravity. Most dark matter is thought to be non-baryonic in nature; it may be composed of some as-yet undiscovered subatomic particles. The primary candidate for dark matter is some new kind of elementary particle that has not yet been discovered, in particular, weakly interacting massive particles (WIMPs). Many experiments to directly detect and study dark matter particles are being actively undertaken, but none have yet succeeded. Dark matter is classified as “cold”, “warm”, or “hot” according to its velocity (more precisely, its free streaming length). Current models favor a cold dark matter scenario, in which structures emerge by gradual accumulation of particles.

Video credit: NASA’s Goddard Space Flight Center/Paul Morris (USRA): Lead Producer/Cassandra Morris: Voice over Talent/Visualizations and Additional Footage: ESA/Hubble — Gravitational Lensing Animation/ESA/Hubble — Gravitational Lensing Simplified Visualization/R. Wesson/ESO — Very Large Telescope Footage

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
07-2-20

Star Shadow

Posted by

 

 

NASA dicit:

In 2017, NASA’s Hubble Space Telescope captured an image of a huge wing-shaped shadow cast by a fledgling star’s unseen, planet-forming disk. The young star, called HBC 672, is casting the shadow across a more distant cloud in a star-forming region—like a fly wandering into the beam of a flashlight shining on a wall.

Video credit: NASA’s Goddard Space Flight Center/Paul Morris (USRA): Producer / Editor/Visualization Credit: NASA, ESA, and A. James and G. Bacon (STScI)/Jason Steele [ ASCAP ]/Soundcast Music [ SESAC ] and Universal Production Music.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
06-3-20

K2-18b

Posted by

 

 

Wikipedia dicit:

K2-18b was identified as part of the Kepler space telescope program, one of over 1,200 exoplanets discovered during the “Second Light” K2 mission. The discovery of K2-18b was made in 2015, orbiting a red dwarf star (now known as K2-18) with a stellar spectral type of M2.8 about 124 light-years (38 pc) from Earth. The planet was detected through variations in the star’s light curve caused by the transit of the planet in front of the star as seen from Earth. The planet was designated “K2-18b” as it was the eighteenth planet discovered during the K2 mission. The predicted relatively low contrast between the planet and its host star would make it easier to observe K2-18b’s atmosphere in the future.

In 2017, data from the Spitzer Space Telescope confirmed that K2-18b orbits in the habitable zone around K2-18 with a 33-day period, short enough to allow for observations of multiple K2-18b orbital cycles and improving the statistical significance of the signal. This led to widespread interest in continued observations of K2-18b.

Later studies on K2-18b using the High Accuracy Radial Velocity Planet Searcher (HARPS) and the Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES) instruments also identified a likely second exoplanet, K2-18c, with an estimated mass of 5.62±0.84 M⊕ in a tighter, 9-day orbit, but this additional planet has not yet been confirmed, and may instead be due to stellar activity.

Video credit: NASA Goddard

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis