OrbitalHub

The place where space exploration, science, and engineering meet

Domain is for sale. $50,000,000.00 USD. Direct any inquiries to contact@orbitalhub.com.

 



 


 

 

NASA dixit:

“On April 22, hours arriving at the International Space Station, Orbital ATK’s Cygnus resupply ship was captured by Expedition 51 Flight Engineer Thomas Pesquet of the European Space Agency and Commander Peggy Whitson of NASA using the Canadarm2 robotic arm. Later, Cygnus was installed to the Earth-facing port of the Unity module where it will reside for the next three months. Cygnus is packed with 7,600 pounds of supplies and research for the crew aboard the orbiting laboratory.”

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 



 

 

NASA dixit:

“Loaded with more than 2.5 tons of supplies and science experiments, Orbital ATK’s Cygnus cargo craft arrived at the International Space Station Oct. 23 following its launch on a refurbished Antares rocket from the Wallops Flight Facility, Virginia Oct. 17. Expedition 49 crewmembers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA captured Cygnus using the station’s Canadian-built robotic arm. Ground controllers then maneuvered Cygnus to the Earth-facing port of the Unity module where it was installed and bolted into place for a month-long stay.”

From CASIS press release:

“The most recent series of payloads berthed with the International Space Station (ISS) Sunday morning onboard the Orbital ATK Cygnus capsule. Many of the investigations launched from Wallops Island, VA onboard the Antares rocket are sponsored by the ISS U.S. National Laboratory. The Center for the Advancement of Science in Space (CASIS) is tasked by NASA with managing and promoting research onboard the ISS National Laboratory for the benefit of Earth. Below provides a summary of the ISS National Laboratory-sponsored payloads delivered today:

CONTROLLED DYNAMICS LOCKER FOR MICROGRAVITY EXPERIMENTS ON ISS

Controlled Dynamics

Principal Investigator: Dr. Scott Green

Dr. Green and his team have developed a hardware platform that will provide research payloads with a “controlled dynamic acceleration environment”—in other words, a technology that will dampen fluctuations/disturbances in the microgravity environment that occur onboard moving spacecraft. This technology promises to attract a new class of research experiments and private funding aimed at exploiting this controlled acceleration environment in microgravity, which has the potential to improve space experiments in crystallization; fluid physics; cell, tissue, and plant culturing; and other studies that require precise control of motion. This investigation stems from a CASIS grant supporting enabling technology development onboard the ISS National Lab.

NANORACKS BLACK BOX

NanoRacks, LLC

Principal Investigator: Mary Murphy

NanoRacks Black Box is a key part of NanoRacks’ next-generation ISS platforms. This new hardware is specially designed to provide near-launch payload turnover of autonomous payloads while providing advanced science capabilities for customers, including the use of robotics, new automated MixStix, and NanoLab-style research. OA-5 provides the first technology demonstration mission to test the NanoRacks Black Box platform, NanoRacks’ own payload hardware, and customer technology demonstration experiments. Technology demonstration payloads onboard OA-5 include multiple education-focused experiments, one of which features a partnership between Valley Christian High School in California and Microsoft, in which students will leverage the Microsoft Windows 10 IoT (internet of things) platform to run experiments on a cell phone motor to test the behaviors of different metals and materials in microgravity environments with status and magnetic forces.

NANORACKS EXTERNAL DEPLOYER

NanoRacks, LLC

Principal Investigators: Conor Brown and Henry Martin

NanoRacks provides opportunities for CubeSat deployment from Cygnus after the vehicle departs from the ISS. The NanoRacks deployer is installed on the exterior of the Cygnus service module, and after completion of its primary ISS resupply mission, Cygnus is intended to move into a higher orbit, and then deploy small satellites. Four satellites are part of the OA-5 mission intended to launch from Cygnus in partnership with the space-based data company, Spire. Spire’s solutions offer organizations near-real-time insights into weather and climate, shipping and supply chain, and maritime domain awareness. Ships carry 90% of global trade over the oceans, but the ships and those that rely on them are open to risks caused by delays, piracy, poor data for search and rescue operations, and incomplete data sets. The ship tracking payload reduces those risks by relaying critical metadata about oceangoing vessels to a network of ground stations. The weather observation payload gathers incredibly accurate temperature, pressure, and humidity data by recording and processing signals from GPS satellites as they “bend” through the Earth’s atmosphere. The data is fed into weather models, where it provides large improvements to short- and medium-term forecasts. This mission will incrementally increase Spire’s satellite constellation, providing additional coverage from a mid-inclination orbit.

SOLIDIFICATION USING A BAFFLE IN SEALED AMPOULES (SUBSA) FURNACE

NASA Marshall Space Flight Center

Material melt-growth experiments have been difficult to run in the space environment because there is just enough residual micro-acceleration (g-jitter) to produce natural convection that interferes with the structure and purity of the material. This convection is responsible for the lack of reliable and reproducible solidification data and, thus, for gaps in solidification theory. The Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment tested an automatically moving baffle (driven by melt expansion during freezing) that was designed to reduce thermal convection inside an ampoule to determine whether the baffle significantly reduces convection. Ground studies showed that the baffle reduces the movement of the material during its liquid phase, making the process easier to analyze and allowing more homogenous crystals to form. The key goal of SUBSA was to clarify the origin of the melt convection in space and to reduce the magnitude to the point that it does not interfere with the transport phenomena. This mission will provide updates to the hardware onboard the ISS to include modifications to the furnace and inserts to ensure future investigations run nominally.”

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
06-19-16

Cygnus Leaves Space Station

Posted by

 

 

NASA dixit:

“At the International Space Station, Expedition 47 Commander Tim Kopra used the Canadarm2 robotic arm to release the Orbital/ATK Cygnus cargo craft June 14, just hours after it was detached from the station. The spacecraft is loaded with trash and other unneeded items. Cygnus is also serving as a platform for an investigation called the Spacecraft Fire Experiment (SAFFIRE), that will deliberately ignite a fire in an enclosed environment so that instruments can measure flame growth and oxygen usage. This experiment is designed to improve the understanding of fire growth in microgravity and to safeguard future space missions. A group of nanosatellites is also being released from Cygnus which will be deorbited June 22 to send the craft into a destructive re-entry over the Pacific Ocean. Cygnus was launched from the Cape Canaveral Air Force Station in Florida atop an Atlas V rocket March 23, arriving at the station March 26 to deliver tons of experiments and supplies for the station’s residents.”

Video credit: NASA’s Goddard Space Flight Center

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 



 

 

NASA dixit:

“The Orbital ATK Cygnus cargo craft launched from the Cape Canaveral Air Force Station in Florida atop a United Launch Alliance Atlas 5 rocket March 22, carrying almost 7,500 pounds of food, supplies and science experiments for the six crew members aboard the International Space Station. Dubbed the “SS Rick Husband” in honor of the late commander of Columbia’s final flight, STS-107, that ended with Columbia’s breakup over Texas in February 2003.

The Orbital ATK Cygnus cargo craft […] arrived at the International Space Station March 26.”

Video credit: NASA

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis

 



 

 

NASA dixit:

“On Dec.6, Orbital ATK’s enhanced Cygnus spacecraft launched from Cape Canaveral Air Force Station in Florida to the International Space Station, on a mission to deliver more than 7,000 pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory. This is Orbital ATK’s fourth contracted mission to the station under the agency’s Commercial Resupply Services contract.”

From Orbital ATK news release:

“Orbital ATK has named the OA-4 Cygnus the “S.S. Deke Slayton II,” upholding the tradition of naming each Cygnus in honor of astronauts and individuals who contributed to the United States’ commercial space program.

“With the naming of this spacecraft, we continue our commitment to honor the late Donald ‘Deke’ K. Slayton, one of the original Mercury Seven astronauts and a champion of America’s commercial space program and leadership in space,” said Frank Culbertson, President of Orbital ATK’s Space Systems Group. “We are pleased that the enhanced Cygnus that bears his name will be able to provide up to 53 percent more in cargo weight to the International Space Station than our previously flown standard version.”

Cygnus, like most Orbital ATK spacecraft, is compatible with multiple launch vehicles, enabling the use of ULA’s Atlas V launch vehicle on this mission. The enhanced Cygnus has several new features, including lightweight UltraFlexTM solar arrays, a mass optimized Service Module structure and a lighter weight propulsion system. In addition to food, clothing, crew supplies, spare parts and equipment, the Cygnus spacecraft is carrying science experiments to expand the research capability of the Expedition 45 and 46 crew members aboard the orbiting laboratory.

Orbital ATK has three CRS missions scheduled in 2016 to support NASA’s ISS cargo needs. A second Cygnus/Atlas V launch will take place next spring from Florida, followed by the return of operations to NASA’s Wallops Flight Facility in mid-2016 where the company will continue CRS missions atop the upgraded Antares rocket.

Under the CRS contract with NASA, Orbital ATK will deliver approximately 62,000 pounds (28,000 kilograms) of cargo to the ISS over 10 missions through 2018. The partnership is changing the way NASA does business, helping build a strong American commercial space industry and freeing the agency to focus on developing the next-generation rocket and spacecraft that will enable humans to travel farther in space than ever before.”

Video credit: NASA/Orbital ATK

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
04-17-09

Delta II

Posted by

 

Credits: NASA/MSFC

 

Delta II is a space launch system operated by United Launch Alliance (ULA), which was initially built by McDonnell Douglas, and by Boeing Integrated Defense Systems after McDonnell Douglas merged with Boeing in 1997.

 

As any other early space launch system, it evolved from a ballistic missile. In the 1960s, the Thor intermediate-range ballistic missile was modified to become the Delta launch vehicle. In 1981, after being operated for 24 years, Delta production was halted due to a change in U.S. space policy. However, in 1986, after the Challenger accident, it was decided that the Space Shuttle fleet would not carry commercial payloads anymore, paving the way for the return of the Delta launch vehicle. Delta II had its maiden flight on February 14, 1989.

 

 

Delta II launch vehicle is 38.2 to 39 m long, with a diameter of 2.44 m, and a mass that can range from 151,700 to 231,870 kg, depending on configuration. Delta II can be configured with two or three stages.

 

Delta II can inject a payload having a mass of 2,700 to 6,100 kg in low Earth orbit (LEO). Payloads deployed to Geosynchronous Transfer Orbit (GTO) can have a mass from 900 to 2,170 kg.

 

The first stage, Thor/Delta XLT-C, is powered by one Pratt & Whitney Rocketdyne RS-27A liquid fuel engine. The RS-27A engine is fueled by RP-1 and liquid oxygen. The RS-27A engine provides around 1,000 kN of thrust.

 

Credits: NASA

 

The solid boosters are used to increase the thrust of the launch vehicle. The first solid boosters used by Delta II 6000 series were Castor 4A motors. The 7000 and 7000 Heavy series use GEM 40 and GEM 46 solid motors respectively. The increase in thrust from Castor 4A to GEM 46 is substantial, from 480 kN to 630 kN.

 

Stage two, Delta K, is powered by a hypergolic restartable Aerojet AJ10-118K engine that can provide 43 kN. The AJ10-118K can fire more than once in order to insert the payload into LEO. The engine uses dinitrogen tetroxide as oxidizer and aerozine 50 (which is a mix of hydrazine and unsymmetrical dimethylhydrazine) as fuel. Besides having hard to pronounce names, the oxidizer and the fuel are very toxic and corrosive. The second stage contains the flight control system, which is a combined inertial system and guidance system.

 

 

The third stage, if present in the configuration, is a Payload Assist Module (PAM). This stage is powered by an ATK-Thiokol motor, which provides the velocity change needed for missions beyond Earth orbit. The stage has no active guidance control and it is spin-stabilized.

 

The de-spin mechanism used to slow the spin of the spacecraft after the burn and before the stage separation is a yo-yo de-spin mechanism. This mechanism consists of two cables with weights on the ends. The weights are released and the angular momentum transferred from the stage reduces the spin to a value that can be controlled by the attitude control system of the spacecraft.

 

Delta II can launch single, dual, or multiple payloads during the same mission. There are three fairing sizes available: composite 3-meter diameter, aluminum 2.9-meter diameter, and stretched composite 3-meter diameter.

 

Credits: NASA

 

Delta II is assembled on the launch pad. After hoisting the first stage into position, the solid boosters are hoisted and mated with the first stage. The second stage is then hoisted atop the first stage.

 

Delta II launch vehicles have a four-digit naming system. The first digit can be either 6 or 7, designating the 6000 or 7000 series. The second digit indicates the number of solid boosters used for the mission. Delta II can have three, four, or nine solid boosters strapped to the first stage. The third digit denotes the engine type used for the second stage. This digit is two for 6000 and 7000 series Delta II, which indicates the Aerojet A10 engine. The last digit designates the type of the third stage. Zero means that no third stage is used, whereas five indicates a third stage powered by a Star 48B solid motor, and 6 marks a third stage powered by a Star 37FM motor. A Delta II 7426 has 4 solid boosters and a third stage powered by a Star 37FM motor.

 

Delta II proved to be a very reliable Expendable Launch Vehicle (ELV). Some NASA missions that used Delta II as launch vehicle include: Mars Global Surveyor, Mars Pathfinder, Mars Exploration Rovers (MER-A Spirit and MER-B Opportunity), Mars Phoenix Lander, Dawn, STEREO, and Kepler.

 

After long years of service, Delta II is getting close to retirement. The final mission for Delta II is currently scheduled for 2011.

 

You can find more information about the Delta launch vehicles on the Delta web page on Boeing’s web site.

 

  • Facebook
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis