OrbitalHub

The place where space exploration, science, and engineering meet

 

Credits: CSA

 

Canada is actively involved in space debris mitigation research and development activities. At the international level, Canada hosted the International Conference on Protection of Materials and Structures from the Space Environment (ICPMSE) in May 2008, and contributed to the 37th Committee on Space Research (COSPAR) Scientific Assembly in July 2008.

 

 

At the national level, the space debris research and development activities are coordinated by the Canadian Space Agency (CSA), which formed the Orbital Debris Working Group (ODWG). The group was formed in order to address a number of objectives:

“to increase the Scientific and Technical (S&T) knowledge and awareness of orbital debris in the space community;

to identify and encourage targeted Research and Development (R&D) in orbital debris and mitigation measures;

to identify and encourage development of orbital debris detection and collision avoidance techniques and technologies;

to promote Scientific and Technical (S&T) collaboration across Canada and with our international partners;

to identify Scientific and Technical (S&T) opportunities in relation to future potential missions which can directly benefit from the results of targeted Research and Development (R&D) and novel operational techniques, and develop and coordinate technical solution in Canada and with international partners; and

to establish and maintain technical liaison with our international partners in order to foster a sustainable space environment.”

 

The Canadian space debris mitigation research and development activities are focused on three main areas: hypervelocity impact facilities, debris mitigation and self healing materials, and spacecraft demise technologies. Hypervelocity impact facilities are facilities that are capable of accelerating projectiles to velocities of more than 10 km/s. Canada is developing an implosion-driven hypervelocity launcher facility. Such a facility could accelerate projectiles having a mass of 10 g to speeds of 10 km/s, facilitating meaningful impact studies. Self healing materials have the capability to initiate a self healing process after an impact, being an in-situ mitigation of space debris damage on board spacecraft. The Canadian Space Agency has supported the efforts to develop and test a self healing concept demonstrator. The spacecraft demise technologies ensure intentional and integral disintegration during re-entry, so that no debris reaches Earth. In this direction, studies that investigate various technologies that could be used to de-orbit micro- and nanosatellites have been conducted.

 

In Canada, the space operators and manufacturers are adopting the space debris mitigation measures on a voluntary basis. The Inter-Agency Space Debris (IADC) guidelines are used for monitoring activities to prevent on-orbit collisions and conduct post-mission disposal. There are also strict requirements integrated in its policies and regulations that address the post-mission disposal of satellites. For example, as required by the Canadian Remote Sensing Space System Act, space system manufacturers have to provide information regarding the method of disposal for the satellite, the estimated duration of the satellite disposal operation, the probability of loss of human life, the amount of debris expected to reach the surface of the Earth upon re-entry, an estimate of the orbital debris expected to be released by the satellite during normal operations by explosion, etc. There are also interesting recommendations made for the operation and post-mission disposal of satellites in Geostationary Orbits. The Environmental Protection of the Geostationary Satellite Orbit recommends “that as little debris as possible should be released into the geostationary orbit during the placement of a satellite in orbit”, and also that “a geostationary satellite at the end of its life should be transferred, before complete exhaustion of its propellant, to a super synchronous graveyard orbit”, where the recommended minimum re-orbiting altitude is given as 300 km.

 

 

  • Digg
  • del.icio.us
  • Facebook
  • Mixx
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
  • ResearchGate

 

Credits: NASA/CSA

 

Canadian astronaut Chris Hadfield will take command of the station during the second half of his third space mission. Hadfield will launch aboard a Soyuz rocket in December 2012, and spend six months on the station as part of the crew of Expedition 34/35. He will return to Earth in a Soyuz capsule in June 2013.

 

Hadfield is the only Canadian to board the Russian Mir space station, in 1995, during his first space flight, while he served as Mission Specialist 1 on STS-74. He is also the first Canadian mission specialist and the first Canadian to operate the Canadarm in orbit.

 

 

His second space flight was onboard STS-100, where he served as Mission Specialist 1. STS-100 was the International Space Station assembly flight 6A, which delivered and installed the Canadarm-2 on the station. During this mission, Hadfield performed two spacewalks.

 

Chris Hadfield also served as Director of Operations for NASA at the Yuri Gagarin Cosmonaut Training Centre in Star City, Russia; as Chief of Robotics for the NASA Astronaut Office at the Johnson Space Center in Houston, Texas; as Chief of International Space Station Operations; and as the Commander of NEEMO 14, a NASA undersea mission to test exploration concepts living in an underwater facility off the Florida coast.

 

The official announcement was made by the Canadian Space Agency. Chris Hadfield’s biography is also available here.

 

  • Digg
  • del.icio.us
  • Facebook
  • Mixx
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
  • ResearchGate

 

Credits: CSA

 

RADARSAT-1 is the first commercial Earth observation satellite developed in Canada, and it is equipped with a powerful synthetic aperture radar (SAR) instrument.

 

Launched on November 4, 1995, from Vandenberg Air Force Base in California, the satellite is well beyond the planned five-year lifetime, and continues to provide images of the Earth for both scientific and commercial applications.

 

 

Canada is involved in space debris mitigation research and development activities. In Canada, these activities are coordinated by the Canadian Space Agency, which formed a group, the Orbital Debris Working Group, in order to address a number of objectives such as to increase the knowledge and awareness of orbital debris in the space community, to encourage research in orbital debris and mitigation measures, and to support development of orbital debris detection and collision avoidance techniques and technologies.

 

In Canada, the space operators and manufacturers are adopting space debris mitigation measures on a voluntary basis. Existing guidelines are used for monitoring activities to prevent on-orbit collisions and conduct post-mission disposal procedures. Space system manufacturers have to provide, among other things, information regarding the method of disposal for the satellite and the estimated duration of the satellite disposal operation.

 

Credits: NASA/GSFC Scientific Visualization Studio

 

The Canadian Space Agency has prepared post-mission disposal plans for its remote sensing satellite RADARSAT-1, plans that comply with the guidelines of the United Nations document entitled Guidelines for Space Debris Mitigation and with the measures required for the space hardware manufacturers in Canada.

 

The remaining fuel will be used to lower the orbit and orient the satellite so that drag is maximized.

 

 

Also, the energy stored in the propellant tanks, the reaction wheels, and the batteries of the satellite will be removed. In this way, the on-orbit retirement period of the satellite is reduced to the lowest possible.

 

You can find more information about RADARSAT-1 on the Canadian Space Agency’s web site.

 

  • Digg
  • del.icio.us
  • Facebook
  • Mixx
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
  • ResearchGate

 

Credits: NASA

 

 

The James Webb Space Telescope (JWST) is the successor of the Hubble Space Telescope (HST). While Hubble looks at the sky in the visible and ultraviolet light, JWST will operate in the infrared.

 

JWST is a joint mission of NASA, ESA, and the Canadian Space Agency.

 

 

The project started in 1996 and was initially known as the Next Generation Space Telescope (NGST). In 2002, the project was renamed the James Webb Space Telescope in honor of NASA administrator James E. Webb, who led the agency from February 1961 to October 1968.

 

The JWST will use a large deployable sunshade to keep the temperature of the telescope to about 35K. Operating at this temperature gives the telescope exceptional performance in near-infrared and mid-infrared wavebands. The JWST observatory will have a five to ten year lifetime and it will not be serviceable by astronauts.

 

JWST will be able to see the first galaxies that formed in the early Universe, and how the young stars formed planetary systems.

 

Credits: NASA

 

The JWST observatory includes the Integrated Science Instrument Module (ISIM), the Optical Telescope Element (OTE), and the Spacecraft Element containing a spacecraft bus (which offers the support functions for the observatory) and the sunshield.

 

I will say a few words about each one of them.

 

 

The Optical Telescope Element (OTE) collects the light coming from space. Thanks to a 6.5 meter primary mirror, JWST will be able to see the galaxies from the beginning of the Universe. The OTE is also composed of the Fine Steering Mirror (FSM), the secondary mirror support structure (SMSS), and the primary mirror backplane assembly (PMBA). Other subsystems of the OTE are the tertiary mirror and the fine steering mirror. The PMBA contains the Integrated Instrument Module (IIM).

 

Because the primary mirror is too large to fit inside any available payload fairing, it had to be made out of eighteen hexagonal segments. Some of the elements will be folded before the launch and unfolded during the commissioning phase at the L2 point. NASA made available some neat animations showing how the observatory will be folded in order to fit into the launcher payload, and how the sun shields and the primary mirror will unfold before the observatory becomes operational.

 

Credits: NASA

 

The sunshield will keep the scientific payload of the observatory away from any light from the Sun, the Earth, or the Moon. Because JWST will observe primarily the infrared light from very distant objects, the temperature of the scientific payload must be maintained at very low values (under 50K). This requirement is so important that even a part of the observatory (the spacecraft bus) had to be placed on the warm side of the sunshield.

 

 

The sunshield not only protects the scientific instruments from the heat of the Sun, the Earth, the Moon, and the warm spacecraft bus electronics, but it also provides a stable thermal environment. This is necessary in order to maintain the alignment of the eighteen hexagonal components of the mirror while the observatory changes its orientation relative to the Sun.

 

The primary mirror is the essential component of a telescope. The design of the primary mirror was driven by a number of important requirements: the size, the mass, and the temperature at which the mirror will operate.

 

Credits: NASA

 

In order to be able to see galaxies from thirteen billion light-years away, scientists determined that the mirror must have a diameter of at least 6.5 meters.

 

The weight of the primary mirror has only one tenth of the mass of Hubble’s mirror per unit area. Considering the size of the mirror, this made the task of launching the telescope into space achievable.

 

 

Due to the fact that the telescope will observe the light in the infrared spectrum, the temperature of the mirror has to be as low as –220 degrees Celsius. If operating at the same temperature as the ground telescopes do, the infrared glow of the mirror would interfere with the light received from distant galaxies. Basically, these distant galaxies would disappear in the noise generated by the telescope.

 

The engineering challenge that scientists faced was to build a lightweight mirror that would preserve its optical and geometric properties when cooled to –220 degrees Celsius. Using beryllium was the solution. Beryllium is lightweight (it is widely used in the aerospace industry) and it is very good at holding its shape across a range of temperatures.

 

As we mentioned above, the PMBA contains the Integrated Instrument Module (IIM), which is the scientific payload onboard the observatory. The scientific payload includes the following scientific instruments: the Mid-Infrared Instrument (MIRI), the Near-Infrared Spectrograph (NIRSpec), the Near-Infrared Camera (NIRCam), and the Fine Guidance Sensor (FGS).

 

The MIRI is an imager/spectrograph that covers the wavelength range from 5 to 27 micrometers. The nominal operating temperature for the MIRI is 7K. The NIRSpec covers two wavelength ranges: from 1 to 5 micrometers (medium-resolution spectroscopy) and from 0.6 to 5 micrometers (lower-resolution spectroscopy). The NIRCam was provided by the University of Arizona. NIRCam covers the spectrum from 0.6 to 5 micrometers. The FGS is a broadband guide camera that is used for guide star acquisition and fine pointing.

 

Credits: ESA

 

The spacecraft bus is composed of every subsystem of the observatory minus the sunshield and the scientific payload, and it provides the necessary support functions for the operations of the observatory. The spacecraft bus contains the Electrical Power Subsystem (EPS), the Attitude Control Subsystem (ACS), the Communication Subsystem (CS), the Command and Data Handling Subsystem (C&DHS), the Propulsion Subsystem (PS), and the Thermal Control Subsystem (TCS).

 

One interesting thing I would like to mention here is that the C&DH subsystem is using a solid-state recorder as memory/data storage for the observatory. I cannot envision a hard disk drive taking all of the vibrations during the launch and running for ten years without any flaws, so the choice of using radiation hardened solid-state memory units on long-term space mission spacecrafts seems to be the optimal choice.

 

The launch vehicle chosen for this mission is the European Ariane 5. The Ariane 5, carrying the James Webb Space Telescope, will liftoff from Guiana sometime in 2013. The space telescope will operate from the L2 point of the Sun-Earth system.

 

 

All three agencies that are part of the project, ESA, NASA, and CSA, have web pages dedicated to the JWST observatory.

 

  • Digg
  • del.icio.us
  • Facebook
  • Mixx
  • Google
  • Slashdot
  • Reddit
  • Live
  • TwitThis
  • ResearchGate